Step |
Hyp |
Ref |
Expression |
1 |
|
df-seqs |
⊢ seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
2 |
|
rdgfun |
⊢ Fun rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
3 |
|
dcomex |
⊢ ω ∈ V |
4 |
3
|
funimaex |
⊢ ( Fun rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) ∈ V ) |
5 |
2 4
|
ax-mp |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) ∈ V |
6 |
1 5
|
eqeltri |
⊢ seqs 𝑀 ( + , 𝐹 ) ∈ V |