| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqseq123d.1 |
⊢ ( 𝜑 → 𝑀 = 𝑁 ) |
| 2 |
|
seqseq123d.2 |
⊢ ( 𝜑 → + = 𝑄 ) |
| 3 |
|
seqseq123d.3 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| 4 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) = ( 𝑦 𝑄 ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ) |
| 5 |
3
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑥 +s 1s ) ) = ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝜑 → ( 𝑦 𝑄 ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) = ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) ) |
| 7 |
4 6
|
eqtrd |
⊢ ( 𝜑 → ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) = ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) ) |
| 8 |
7
|
opeq2d |
⊢ ( 𝜑 → 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 = 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) |
| 9 |
8
|
mpoeq3dv |
⊢ ( 𝜑 → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) ) |
| 10 |
3 1
|
fveq12d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑁 ) ) |
| 11 |
1 10
|
opeq12d |
⊢ ( 𝜑 → 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) |
| 12 |
|
rdgeq12 |
⊢ ( ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) ∧ 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) ) |
| 14 |
13
|
imaeq1d |
⊢ ( 𝜑 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) “ ω ) ) |
| 15 |
|
df-seqs |
⊢ seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
| 16 |
|
df-seqs |
⊢ seqs 𝑁 ( 𝑄 , 𝐺 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 𝑄 ( 𝐺 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑁 , ( 𝐺 ‘ 𝑁 ) 〉 ) “ ω ) |
| 17 |
14 15 16
|
3eqtr4g |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = seqs 𝑁 ( 𝑄 , 𝐺 ) ) |