Metamath Proof Explorer


Theorem seqseq123d

Description: Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses seqseq123d.1 φ M = N
seqseq123d.2 φ + ˙ = Q
seqseq123d.3 φ F = G
Assertion seqseq123d φ seq s M + ˙ F = seq s N Q G

Proof

Step Hyp Ref Expression
1 seqseq123d.1 φ M = N
2 seqseq123d.2 φ + ˙ = Q
3 seqseq123d.3 φ F = G
4 2 oveqd φ y + ˙ F x + s 1 s = y Q F x + s 1 s
5 3 fveq1d φ F x + s 1 s = G x + s 1 s
6 5 oveq2d φ y Q F x + s 1 s = y Q G x + s 1 s
7 4 6 eqtrd φ y + ˙ F x + s 1 s = y Q G x + s 1 s
8 7 opeq2d φ x + s 1 s y + ˙ F x + s 1 s = x + s 1 s y Q G x + s 1 s
9 8 mpoeq3dv φ x V , y V x + s 1 s y + ˙ F x + s 1 s = x V , y V x + s 1 s y Q G x + s 1 s
10 3 1 fveq12d φ F M = G N
11 1 10 opeq12d φ M F M = N G N
12 rdgeq12 x V , y V x + s 1 s y + ˙ F x + s 1 s = x V , y V x + s 1 s y Q G x + s 1 s M F M = N G N rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M = rec x V , y V x + s 1 s y Q G x + s 1 s N G N
13 9 11 12 syl2anc φ rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M = rec x V , y V x + s 1 s y Q G x + s 1 s N G N
14 13 imaeq1d φ rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω = rec x V , y V x + s 1 s y Q G x + s 1 s N G N ω
15 df-seqs seq s M + ˙ F = rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω
16 df-seqs seq s N Q G = rec x V , y V x + s 1 s y Q G x + s 1 s N G N ω
17 14 15 16 3eqtr4g φ seq s M + ˙ F = seq s N Q G