Metamath Proof Explorer


Theorem nfseqs

Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses nfseqs.1 _ x M
nfseqs.2 _ x + ˙
nfseqs.3 _ x F
Assertion nfseqs _ x seq s M + ˙ F

Proof

Step Hyp Ref Expression
1 nfseqs.1 _ x M
2 nfseqs.2 _ x + ˙
3 nfseqs.3 _ x F
4 df-seqs seq s M + ˙ F = rec y V , z V y + s 1 s z + ˙ F y + s 1 s M F M ω
5 nfcv _ x V
6 nfcv _ x y + s 1 s
7 nfcv _ x z
8 3 6 nffv _ x F y + s 1 s
9 7 2 8 nfov _ x z + ˙ F y + s 1 s
10 6 9 nfop _ x y + s 1 s z + ˙ F y + s 1 s
11 5 5 10 nfmpo _ x y V , z V y + s 1 s z + ˙ F y + s 1 s
12 3 1 nffv _ x F M
13 1 12 nfop _ x M F M
14 11 13 nfrdg _ x rec y V , z V y + s 1 s z + ˙ F y + s 1 s M F M
15 nfcv _ x ω
16 14 15 nfima _ x rec y V , z V y + s 1 s z + ˙ F y + s 1 s M F M ω
17 4 16 nfcxfr _ x seq s M + ˙ F