| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfseqs.1 |
⊢ Ⅎ 𝑥 𝑀 |
| 2 |
|
nfseqs.2 |
⊢ Ⅎ 𝑥 + |
| 3 |
|
nfseqs.3 |
⊢ Ⅎ 𝑥 𝐹 |
| 4 |
|
df-seqs |
⊢ seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 V |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑦 +s 1s ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 8 |
3 6
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 𝑦 +s 1s ) ) |
| 9 |
7 2 8
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) |
| 10 |
6 9
|
nfop |
⊢ Ⅎ 𝑥 〈 ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) 〉 |
| 11 |
5 5 10
|
nfmpo |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) 〉 ) |
| 12 |
3 1
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑀 ) |
| 13 |
1 12
|
nfop |
⊢ Ⅎ 𝑥 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 |
| 14 |
11 13
|
nfrdg |
⊢ Ⅎ 𝑥 rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 ω |
| 16 |
14 15
|
nfima |
⊢ Ⅎ 𝑥 ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
| 17 |
4 16
|
nfcxfr |
⊢ Ⅎ 𝑥 seqs 𝑀 ( + , 𝐹 ) |