Metamath Proof Explorer


Theorem nfseqs

Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses nfseqs.1 𝑥 𝑀
nfseqs.2 𝑥 +
nfseqs.3 𝑥 𝐹
Assertion nfseqs 𝑥 seqs 𝑀 ( + , 𝐹 )

Proof

Step Hyp Ref Expression
1 nfseqs.1 𝑥 𝑀
2 nfseqs.2 𝑥 +
3 nfseqs.3 𝑥 𝐹
4 df-seqs seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
5 nfcv 𝑥 V
6 nfcv 𝑥 ( 𝑦 +s 1s )
7 nfcv 𝑥 𝑧
8 3 6 nffv 𝑥 ( 𝐹 ‘ ( 𝑦 +s 1s ) )
9 7 2 8 nfov 𝑥 ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) )
10 6 9 nfop 𝑥 ⟨ ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) ⟩
11 5 5 10 nfmpo 𝑥 ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) ⟩ )
12 3 1 nffv 𝑥 ( 𝐹𝑀 )
13 1 12 nfop 𝑥𝑀 , ( 𝐹𝑀 ) ⟩
14 11 13 nfrdg 𝑥 rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ )
15 nfcv 𝑥 ω
16 14 15 nfima 𝑥 ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑧 + ( 𝐹 ‘ ( 𝑦 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
17 4 16 nfcxfr 𝑥 seqs 𝑀 ( + , 𝐹 )