Step |
Hyp |
Ref |
Expression |
1 |
|
nfrdg.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
nfrdg.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 V |
5 |
|
nfv |
⊢ Ⅎ 𝑥 𝑔 = ∅ |
6 |
|
nfv |
⊢ Ⅎ 𝑥 Lim dom 𝑔 |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 ∪ ran 𝑔 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑔 ‘ ∪ dom 𝑔 ) |
9 |
1 8
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) |
10 |
6 7 9
|
nfif |
⊢ Ⅎ 𝑥 if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) |
11 |
5 2 10
|
nfif |
⊢ Ⅎ 𝑥 if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) |
12 |
4 11
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
13 |
12
|
nfrecs |
⊢ Ⅎ 𝑥 recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
14 |
3 13
|
nfcxfr |
⊢ Ⅎ 𝑥 rec ( 𝐹 , 𝐴 ) |