| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfrdg.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | nfrdg.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 V | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑥 𝑔  =  ∅ | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 Lim  dom  𝑔 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 ∪  ran  𝑔 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ ∪  dom  𝑔 ) | 
						
							| 9 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) | 
						
							| 10 | 6 7 9 | nfif | ⊢ Ⅎ 𝑥 if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) | 
						
							| 11 | 5 2 10 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) | 
						
							| 12 | 4 11 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 13 | 12 | nfrecs | ⊢ Ⅎ 𝑥 recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 14 | 3 13 | nfcxfr | ⊢ Ⅎ 𝑥 rec ( 𝐹 ,  𝐴 ) |