Metamath Proof Explorer


Theorem nfseqs

Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses nfseqs.1
|- F/_ x M
nfseqs.2
|- F/_ x .+
nfseqs.3
|- F/_ x F
Assertion nfseqs
|- F/_ x seq_s M ( .+ , F )

Proof

Step Hyp Ref Expression
1 nfseqs.1
 |-  F/_ x M
2 nfseqs.2
 |-  F/_ x .+
3 nfseqs.3
 |-  F/_ x F
4 df-seqs
 |-  seq_s M ( .+ , F ) = ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( z .+ ( F ` ( y +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om )
5 nfcv
 |-  F/_ x _V
6 nfcv
 |-  F/_ x ( y +s 1s )
7 nfcv
 |-  F/_ x z
8 3 6 nffv
 |-  F/_ x ( F ` ( y +s 1s ) )
9 7 2 8 nfov
 |-  F/_ x ( z .+ ( F ` ( y +s 1s ) ) )
10 6 9 nfop
 |-  F/_ x <. ( y +s 1s ) , ( z .+ ( F ` ( y +s 1s ) ) ) >.
11 5 5 10 nfmpo
 |-  F/_ x ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( z .+ ( F ` ( y +s 1s ) ) ) >. )
12 3 1 nffv
 |-  F/_ x ( F ` M )
13 1 12 nfop
 |-  F/_ x <. M , ( F ` M ) >.
14 11 13 nfrdg
 |-  F/_ x rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( z .+ ( F ` ( y +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. )
15 nfcv
 |-  F/_ x _om
16 14 15 nfima
 |-  F/_ x ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( z .+ ( F ` ( y +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om )
17 4 16 nfcxfr
 |-  F/_ x seq_s M ( .+ , F )