Step |
Hyp |
Ref |
Expression |
1 |
|
seqseq123d.1 |
|- ( ph -> M = N ) |
2 |
|
seqseq123d.2 |
|- ( ph -> .+ = Q ) |
3 |
|
seqseq123d.3 |
|- ( ph -> F = G ) |
4 |
2
|
oveqd |
|- ( ph -> ( y .+ ( F ` ( x +s 1s ) ) ) = ( y Q ( F ` ( x +s 1s ) ) ) ) |
5 |
3
|
fveq1d |
|- ( ph -> ( F ` ( x +s 1s ) ) = ( G ` ( x +s 1s ) ) ) |
6 |
5
|
oveq2d |
|- ( ph -> ( y Q ( F ` ( x +s 1s ) ) ) = ( y Q ( G ` ( x +s 1s ) ) ) ) |
7 |
4 6
|
eqtrd |
|- ( ph -> ( y .+ ( F ` ( x +s 1s ) ) ) = ( y Q ( G ` ( x +s 1s ) ) ) ) |
8 |
7
|
opeq2d |
|- ( ph -> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. = <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) |
9 |
8
|
mpoeq3dv |
|- ( ph -> ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) = ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) ) |
10 |
3 1
|
fveq12d |
|- ( ph -> ( F ` M ) = ( G ` N ) ) |
11 |
1 10
|
opeq12d |
|- ( ph -> <. M , ( F ` M ) >. = <. N , ( G ` N ) >. ) |
12 |
|
rdgeq12 |
|- ( ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) = ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) /\ <. M , ( F ` M ) >. = <. N , ( G ` N ) >. ) -> rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) , <. N , ( G ` N ) >. ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ph -> rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) , <. N , ( G ` N ) >. ) ) |
14 |
13
|
imaeq1d |
|- ( ph -> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) , <. N , ( G ` N ) >. ) " _om ) ) |
15 |
|
df-seqs |
|- seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
16 |
|
df-seqs |
|- seq_s N ( Q , G ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y Q ( G ` ( x +s 1s ) ) ) >. ) , <. N , ( G ` N ) >. ) " _om ) |
17 |
14 15 16
|
3eqtr4g |
|- ( ph -> seq_s M ( .+ , F ) = seq_s N ( Q , G ) ) |