Metamath Proof Explorer


Theorem seqs1

Description: The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypothesis seqs1.1 φ M No
Assertion seqs1 φ seq s M + ˙ F M = F M

Proof

Step Hyp Ref Expression
1 seqs1.1 φ M No
2 eqidd φ rec x V x + s 1 s M ω = rec x V x + s 1 s M ω
3 eqidd φ rec x V x + s 1 s M ω = rec x V x + s 1 s M ω
4 fvexd φ F M V
5 eqidd φ rec x V , y V x + s 1 s x z V , w V w + ˙ F z + s 1 s y M F M ω = rec x V , y V x + s 1 s x z V , w V w + ˙ F z + s 1 s y M F M ω
6 5 seqsval φ seq s M + ˙ F = ran rec x V , y V x + s 1 s x z V , w V w + ˙ F z + s 1 s y M F M ω
7 1 2 3 4 5 6 noseqrdg0 φ seq s M + ˙ F M = F M