Metamath Proof Explorer


Theorem seqsp1

Description: The value of the surreal sequence builder at a successor. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses seqsp1.1 φ M No
seqsp1.2 φ Z = rec x V x + s 1 s M ω
seqsp1.3 φ N Z
Assertion seqsp1 φ seq s M + ˙ F N + s 1 s = seq s M + ˙ F N + ˙ F N + s 1 s

Proof

Step Hyp Ref Expression
1 seqsp1.1 φ M No
2 seqsp1.2 φ Z = rec x V x + s 1 s M ω
3 seqsp1.3 φ N Z
4 eqidd φ rec y V y + s 1 s M ω = rec y V y + s 1 s M ω
5 oveq1 x = y x + s 1 s = y + s 1 s
6 5 cbvmptv x V x + s 1 s = y V y + s 1 s
7 rdgeq1 x V x + s 1 s = y V y + s 1 s rec x V x + s 1 s M = rec y V y + s 1 s M
8 6 7 ax-mp rec x V x + s 1 s M = rec y V y + s 1 s M
9 8 imaeq1i rec x V x + s 1 s M ω = rec y V y + s 1 s M ω
10 2 9 eqtrdi φ Z = rec y V y + s 1 s M ω
11 fvexd φ F M V
12 eqidd φ rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω = rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω
13 12 seqsval φ seq s M + ˙ F = ran rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω
14 1 4 10 11 12 13 noseqrdgsuc φ N Z seq s M + ˙ F N + s 1 s = N w V , t V t + ˙ F w + s 1 s seq s M + ˙ F N
15 3 14 mpdan φ seq s M + ˙ F N + s 1 s = N w V , t V t + ˙ F w + s 1 s seq s M + ˙ F N
16 3 elexd φ N V
17 fvex seq s M + ˙ F N V
18 fvoveq1 w = N F w + s 1 s = F N + s 1 s
19 18 oveq2d w = N t + ˙ F w + s 1 s = t + ˙ F N + s 1 s
20 oveq1 t = seq s M + ˙ F N t + ˙ F N + s 1 s = seq s M + ˙ F N + ˙ F N + s 1 s
21 eqid w V , t V t + ˙ F w + s 1 s = w V , t V t + ˙ F w + s 1 s
22 ovex seq s M + ˙ F N + ˙ F N + s 1 s V
23 19 20 21 22 ovmpo N V seq s M + ˙ F N V N w V , t V t + ˙ F w + s 1 s seq s M + ˙ F N = seq s M + ˙ F N + ˙ F N + s 1 s
24 16 17 23 sylancl φ N w V , t V t + ˙ F w + s 1 s seq s M + ˙ F N = seq s M + ˙ F N + ˙ F N + s 1 s
25 15 24 eqtrd φ seq s M + ˙ F N + s 1 s = seq s M + ˙ F N + ˙ F N + s 1 s