Step |
Hyp |
Ref |
Expression |
1 |
|
seqsp1.1 |
|- ( ph -> M e. No ) |
2 |
|
seqsp1.2 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) ) |
3 |
|
seqsp1.3 |
|- ( ph -> N e. Z ) |
4 |
|
eqidd |
|- ( ph -> ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) ) |
5 |
|
oveq1 |
|- ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) |
6 |
5
|
cbvmptv |
|- ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) |
7 |
|
rdgeq1 |
|- ( ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) -> rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) ) |
8 |
6 7
|
ax-mp |
|- rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |
9 |
8
|
imaeq1i |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) |
10 |
2 9
|
eqtrdi |
|- ( ph -> Z = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) ) |
11 |
|
fvexd |
|- ( ph -> ( F ` M ) e. _V ) |
12 |
|
eqidd |
|- ( ph -> ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
13 |
12
|
seqsval |
|- ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
14 |
1 4 10 11 12 13
|
noseqrdgsuc |
|- ( ( ph /\ N e. Z ) -> ( seq_s M ( .+ , F ) ` ( N +s 1s ) ) = ( N ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) ( seq_s M ( .+ , F ) ` N ) ) ) |
15 |
3 14
|
mpdan |
|- ( ph -> ( seq_s M ( .+ , F ) ` ( N +s 1s ) ) = ( N ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) ( seq_s M ( .+ , F ) ` N ) ) ) |
16 |
3
|
elexd |
|- ( ph -> N e. _V ) |
17 |
|
fvex |
|- ( seq_s M ( .+ , F ) ` N ) e. _V |
18 |
|
fvoveq1 |
|- ( w = N -> ( F ` ( w +s 1s ) ) = ( F ` ( N +s 1s ) ) ) |
19 |
18
|
oveq2d |
|- ( w = N -> ( t .+ ( F ` ( w +s 1s ) ) ) = ( t .+ ( F ` ( N +s 1s ) ) ) ) |
20 |
|
oveq1 |
|- ( t = ( seq_s M ( .+ , F ) ` N ) -> ( t .+ ( F ` ( N +s 1s ) ) ) = ( ( seq_s M ( .+ , F ) ` N ) .+ ( F ` ( N +s 1s ) ) ) ) |
21 |
|
eqid |
|- ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) = ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) |
22 |
|
ovex |
|- ( ( seq_s M ( .+ , F ) ` N ) .+ ( F ` ( N +s 1s ) ) ) e. _V |
23 |
19 20 21 22
|
ovmpo |
|- ( ( N e. _V /\ ( seq_s M ( .+ , F ) ` N ) e. _V ) -> ( N ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) ( seq_s M ( .+ , F ) ` N ) ) = ( ( seq_s M ( .+ , F ) ` N ) .+ ( F ` ( N +s 1s ) ) ) ) |
24 |
16 17 23
|
sylancl |
|- ( ph -> ( N ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) ( seq_s M ( .+ , F ) ` N ) ) = ( ( seq_s M ( .+ , F ) ` N ) .+ ( F ` ( N +s 1s ) ) ) ) |
25 |
15 24
|
eqtrd |
|- ( ph -> ( seq_s M ( .+ , F ) ` ( N +s 1s ) ) = ( ( seq_s M ( .+ , F ) ` N ) .+ ( F ` ( N +s 1s ) ) ) ) |