Step |
Hyp |
Ref |
Expression |
1 |
|
seqsp1.1 |
⊢ ( 𝜑 → 𝑀 ∈ No ) |
2 |
|
seqsp1.2 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) ) |
3 |
|
seqsp1.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +s 1s ) = ( 𝑦 +s 1s ) ) |
6 |
5
|
cbvmptv |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) |
7 |
|
rdgeq1 |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ) |
8 |
6 7
|
ax-mp |
⊢ rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) |
9 |
8
|
imaeq1i |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω ) |
10 |
2 9
|
eqtrdi |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω ) ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ V ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
13 |
12
|
seqsval |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
14 |
1 4 10 11 12 13
|
noseqrdgsuc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( seqs 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 +s 1s ) ) = ( 𝑁 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
15 |
3 14
|
mpdan |
⊢ ( 𝜑 → ( seqs 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 +s 1s ) ) = ( 𝑁 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
16 |
3
|
elexd |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
17 |
|
fvex |
⊢ ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V |
18 |
|
fvoveq1 |
⊢ ( 𝑤 = 𝑁 → ( 𝐹 ‘ ( 𝑤 +s 1s ) ) = ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑤 = 𝑁 → ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) = ( 𝑡 + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑡 = ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( 𝑡 + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) = ( ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ) |
21 |
|
eqid |
⊢ ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) = ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) |
22 |
|
ovex |
⊢ ( ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ∈ V |
23 |
19 20 21 22
|
ovmpo |
⊢ ( ( 𝑁 ∈ V ∧ ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ V ) → ( 𝑁 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ) |
24 |
16 17 23
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ) |
25 |
15 24
|
eqtrd |
⊢ ( 𝜑 → ( seqs 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 +s 1s ) ) = ( ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 +s 1s ) ) ) ) |