Metamath Proof Explorer


Theorem noseqrdgsuc

Description: Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses om2noseq.1
|- ( ph -> C e. No )
om2noseq.2
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
om2noseq.3
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
noseqrdg.1
|- ( ph -> A e. V )
noseqrdg.2
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) )
noseqrdg.3
|- ( ph -> S = ran R )
Assertion noseqrdgsuc
|- ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( B F ( S ` B ) ) )

Proof

Step Hyp Ref Expression
1 om2noseq.1
 |-  ( ph -> C e. No )
2 om2noseq.2
 |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
3 om2noseq.3
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
4 noseqrdg.1
 |-  ( ph -> A e. V )
5 noseqrdg.2
 |-  ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) )
6 noseqrdg.3
 |-  ( ph -> S = ran R )
7 1 2 3 4 5 6 noseqrdgfn
 |-  ( ph -> S Fn Z )
8 7 adantr
 |-  ( ( ph /\ B e. Z ) -> S Fn Z )
9 8 fnfund
 |-  ( ( ph /\ B e. Z ) -> Fun S )
10 3 adantr
 |-  ( ( ph /\ B e. Z ) -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
11 1 adantr
 |-  ( ( ph /\ B e. Z ) -> C e. No )
12 simpr
 |-  ( ( ph /\ B e. Z ) -> B e. Z )
13 10 11 12 noseqp1
 |-  ( ( ph /\ B e. Z ) -> ( B +s 1s ) e. Z )
14 1 2 3 4 5 noseqrdglem
 |-  ( ( ph /\ ( B +s 1s ) e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. ran R )
15 13 14 syldan
 |-  ( ( ph /\ B e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. ran R )
16 6 adantr
 |-  ( ( ph /\ B e. Z ) -> S = ran R )
17 15 16 eleqtrrd
 |-  ( ( ph /\ B e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. S )
18 funopfv
 |-  ( Fun S -> ( <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. S -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) ) )
19 9 17 18 sylc
 |-  ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) )
20 1 2 3 om2noseqf1o
 |-  ( ph -> G : _om -1-1-onto-> Z )
21 20 adantr
 |-  ( ( ph /\ B e. Z ) -> G : _om -1-1-onto-> Z )
22 f1ocnvdm
 |-  ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( `' G ` B ) e. _om )
23 20 22 sylan
 |-  ( ( ph /\ B e. Z ) -> ( `' G ` B ) e. _om )
24 peano2
 |-  ( ( `' G ` B ) e. _om -> suc ( `' G ` B ) e. _om )
25 23 24 syl
 |-  ( ( ph /\ B e. Z ) -> suc ( `' G ` B ) e. _om )
26 21 25 jca
 |-  ( ( ph /\ B e. Z ) -> ( G : _om -1-1-onto-> Z /\ suc ( `' G ` B ) e. _om ) )
27 2 adantr
 |-  ( ( ph /\ B e. Z ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
28 11 27 23 om2noseqsuc
 |-  ( ( ph /\ B e. Z ) -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) +s 1s ) )
29 f1ocnvfv2
 |-  ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B )
30 20 29 sylan
 |-  ( ( ph /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B )
31 30 oveq1d
 |-  ( ( ph /\ B e. Z ) -> ( ( G ` ( `' G ` B ) ) +s 1s ) = ( B +s 1s ) )
32 28 31 eqtrd
 |-  ( ( ph /\ B e. Z ) -> ( G ` suc ( `' G ` B ) ) = ( B +s 1s ) )
33 f1ocnvfv
 |-  ( ( G : _om -1-1-onto-> Z /\ suc ( `' G ` B ) e. _om ) -> ( ( G ` suc ( `' G ` B ) ) = ( B +s 1s ) -> ( `' G ` ( B +s 1s ) ) = suc ( `' G ` B ) ) )
34 26 32 33 sylc
 |-  ( ( ph /\ B e. Z ) -> ( `' G ` ( B +s 1s ) ) = suc ( `' G ` B ) )
35 34 fveq2d
 |-  ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` ( B +s 1s ) ) ) = ( R ` suc ( `' G ` B ) ) )
36 35 fveq2d
 |-  ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) )
37 19 36 eqtrd
 |-  ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) )
38 frsuc
 |-  ( ( `' G ` B ) e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) )
39 38 adantl
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) )
40 5 fveq1d
 |-  ( ph -> ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) )
41 40 adantr
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) )
42 5 fveq1d
 |-  ( ph -> ( R ` ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) )
43 42 fveq2d
 |-  ( ph -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) )
44 43 adantr
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) )
45 39 41 44 3eqtr4d
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) )
46 1 2 3 4 5 om2noseqrdg
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )
47 46 fveq2d
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) )
48 df-ov
 |-  ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )
49 47 48 eqtr4di
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
50 45 49 eqtrd
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
51 fvex
 |-  ( G ` ( `' G ` B ) ) e. _V
52 fvex
 |-  ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V
53 oveq1
 |-  ( z = ( G ` ( `' G ` B ) ) -> ( z +s 1s ) = ( ( G ` ( `' G ` B ) ) +s 1s ) )
54 oveq1
 |-  ( z = ( G ` ( `' G ` B ) ) -> ( z F w ) = ( ( G ` ( `' G ` B ) ) F w ) )
55 53 54 opeq12d
 |-  ( z = ( G ` ( `' G ` B ) ) -> <. ( z +s 1s ) , ( z F w ) >. = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F w ) >. )
56 oveq2
 |-  ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> ( ( G ` ( `' G ` B ) ) F w ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
57 56 opeq2d
 |-  ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F w ) >. = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. )
58 oveq1
 |-  ( x = z -> ( x +s 1s ) = ( z +s 1s ) )
59 oveq1
 |-  ( x = z -> ( x F y ) = ( z F y ) )
60 58 59 opeq12d
 |-  ( x = z -> <. ( x +s 1s ) , ( x F y ) >. = <. ( z +s 1s ) , ( z F y ) >. )
61 oveq2
 |-  ( y = w -> ( z F y ) = ( z F w ) )
62 61 opeq2d
 |-  ( y = w -> <. ( z +s 1s ) , ( z F y ) >. = <. ( z +s 1s ) , ( z F w ) >. )
63 60 62 cbvmpov
 |-  ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) = ( z e. _V , w e. _V |-> <. ( z +s 1s ) , ( z F w ) >. )
64 opex
 |-  <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. e. _V
65 55 57 63 64 ovmpo
 |-  ( ( ( G ` ( `' G ` B ) ) e. _V /\ ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V ) -> ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. )
66 51 52 65 mp2an
 |-  ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >.
67 50 66 eqtrdi
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. )
68 67 fveq2d
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( 2nd ` <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) )
69 ovex
 |-  ( ( G ` ( `' G ` B ) ) +s 1s ) e. _V
70 ovex
 |-  ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) e. _V
71 69 70 op2nd
 |-  ( 2nd ` <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) )
72 68 71 eqtrdi
 |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
73 23 72 syldan
 |-  ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
74 1 2 3 4 5 noseqrdglem
 |-  ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R )
75 74 16 eleqtrrd
 |-  ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S )
76 funopfv
 |-  ( Fun S -> ( <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) )
77 9 75 76 sylc
 |-  ( ( ph /\ B e. Z ) -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) )
78 77 eqcomd
 |-  ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` ( `' G ` B ) ) ) = ( S ` B ) )
79 30 78 oveq12d
 |-  ( ( ph /\ B e. Z ) -> ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( B F ( S ` B ) ) )
80 37 73 79 3eqtrd
 |-  ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( B F ( S ` B ) ) )