Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
4 |
|
noseqrdg.1 |
|- ( ph -> A e. V ) |
5 |
|
noseqrdg.2 |
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) |
6 |
|
noseqrdg.3 |
|- ( ph -> S = ran R ) |
7 |
1 2 3 4 5 6
|
noseqrdgfn |
|- ( ph -> S Fn Z ) |
8 |
7
|
adantr |
|- ( ( ph /\ B e. Z ) -> S Fn Z ) |
9 |
8
|
fnfund |
|- ( ( ph /\ B e. Z ) -> Fun S ) |
10 |
3
|
adantr |
|- ( ( ph /\ B e. Z ) -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ B e. Z ) -> C e. No ) |
12 |
|
simpr |
|- ( ( ph /\ B e. Z ) -> B e. Z ) |
13 |
10 11 12
|
noseqp1 |
|- ( ( ph /\ B e. Z ) -> ( B +s 1s ) e. Z ) |
14 |
1 2 3 4 5
|
noseqrdglem |
|- ( ( ph /\ ( B +s 1s ) e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. ran R ) |
15 |
13 14
|
syldan |
|- ( ( ph /\ B e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. ran R ) |
16 |
6
|
adantr |
|- ( ( ph /\ B e. Z ) -> S = ran R ) |
17 |
15 16
|
eleqtrrd |
|- ( ( ph /\ B e. Z ) -> <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. S ) |
18 |
|
funopfv |
|- ( Fun S -> ( <. ( B +s 1s ) , ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) >. e. S -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) ) ) |
19 |
9 17 18
|
sylc |
|- ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) ) |
20 |
1 2 3
|
om2noseqf1o |
|- ( ph -> G : _om -1-1-onto-> Z ) |
21 |
20
|
adantr |
|- ( ( ph /\ B e. Z ) -> G : _om -1-1-onto-> Z ) |
22 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( `' G ` B ) e. _om ) |
23 |
20 22
|
sylan |
|- ( ( ph /\ B e. Z ) -> ( `' G ` B ) e. _om ) |
24 |
|
peano2 |
|- ( ( `' G ` B ) e. _om -> suc ( `' G ` B ) e. _om ) |
25 |
23 24
|
syl |
|- ( ( ph /\ B e. Z ) -> suc ( `' G ` B ) e. _om ) |
26 |
21 25
|
jca |
|- ( ( ph /\ B e. Z ) -> ( G : _om -1-1-onto-> Z /\ suc ( `' G ` B ) e. _om ) ) |
27 |
2
|
adantr |
|- ( ( ph /\ B e. Z ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
28 |
11 27 23
|
om2noseqsuc |
|- ( ( ph /\ B e. Z ) -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) +s 1s ) ) |
29 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) |
30 |
20 29
|
sylan |
|- ( ( ph /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) |
31 |
30
|
oveq1d |
|- ( ( ph /\ B e. Z ) -> ( ( G ` ( `' G ` B ) ) +s 1s ) = ( B +s 1s ) ) |
32 |
28 31
|
eqtrd |
|- ( ( ph /\ B e. Z ) -> ( G ` suc ( `' G ` B ) ) = ( B +s 1s ) ) |
33 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> Z /\ suc ( `' G ` B ) e. _om ) -> ( ( G ` suc ( `' G ` B ) ) = ( B +s 1s ) -> ( `' G ` ( B +s 1s ) ) = suc ( `' G ` B ) ) ) |
34 |
26 32 33
|
sylc |
|- ( ( ph /\ B e. Z ) -> ( `' G ` ( B +s 1s ) ) = suc ( `' G ` B ) ) |
35 |
34
|
fveq2d |
|- ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` ( B +s 1s ) ) ) = ( R ` suc ( `' G ` B ) ) ) |
36 |
35
|
fveq2d |
|- ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` ( `' G ` ( B +s 1s ) ) ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
37 |
19 36
|
eqtrd |
|- ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
38 |
|
frsuc |
|- ( ( `' G ` B ) e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
39 |
38
|
adantl |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
40 |
5
|
fveq1d |
|- ( ph -> ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) ) |
42 |
5
|
fveq1d |
|- ( ph -> ( R ` ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) |
43 |
42
|
fveq2d |
|- ( ph -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
45 |
39 41 44
|
3eqtr4d |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) ) |
46 |
1 2 3 4 5
|
om2noseqrdg |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
47 |
46
|
fveq2d |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) ) |
48 |
|
df-ov |
|- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
49 |
47 48
|
eqtr4di |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
50 |
45 49
|
eqtrd |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
51 |
|
fvex |
|- ( G ` ( `' G ` B ) ) e. _V |
52 |
|
fvex |
|- ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V |
53 |
|
oveq1 |
|- ( z = ( G ` ( `' G ` B ) ) -> ( z +s 1s ) = ( ( G ` ( `' G ` B ) ) +s 1s ) ) |
54 |
|
oveq1 |
|- ( z = ( G ` ( `' G ` B ) ) -> ( z F w ) = ( ( G ` ( `' G ` B ) ) F w ) ) |
55 |
53 54
|
opeq12d |
|- ( z = ( G ` ( `' G ` B ) ) -> <. ( z +s 1s ) , ( z F w ) >. = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F w ) >. ) |
56 |
|
oveq2 |
|- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> ( ( G ` ( `' G ` B ) ) F w ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
57 |
56
|
opeq2d |
|- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F w ) >. = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
58 |
|
oveq1 |
|- ( x = z -> ( x +s 1s ) = ( z +s 1s ) ) |
59 |
|
oveq1 |
|- ( x = z -> ( x F y ) = ( z F y ) ) |
60 |
58 59
|
opeq12d |
|- ( x = z -> <. ( x +s 1s ) , ( x F y ) >. = <. ( z +s 1s ) , ( z F y ) >. ) |
61 |
|
oveq2 |
|- ( y = w -> ( z F y ) = ( z F w ) ) |
62 |
61
|
opeq2d |
|- ( y = w -> <. ( z +s 1s ) , ( z F y ) >. = <. ( z +s 1s ) , ( z F w ) >. ) |
63 |
60 62
|
cbvmpov |
|- ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) = ( z e. _V , w e. _V |-> <. ( z +s 1s ) , ( z F w ) >. ) |
64 |
|
opex |
|- <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. e. _V |
65 |
55 57 63 64
|
ovmpo |
|- ( ( ( G ` ( `' G ` B ) ) e. _V /\ ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V ) -> ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
66 |
51 52 65
|
mp2an |
|- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. |
67 |
50 66
|
eqtrdi |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` suc ( `' G ` B ) ) = <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
68 |
67
|
fveq2d |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( 2nd ` <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) ) |
69 |
|
ovex |
|- ( ( G ` ( `' G ` B ) ) +s 1s ) e. _V |
70 |
|
ovex |
|- ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) e. _V |
71 |
69 70
|
op2nd |
|- ( 2nd ` <. ( ( G ` ( `' G ` B ) ) +s 1s ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
72 |
68 71
|
eqtrdi |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
73 |
23 72
|
syldan |
|- ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
74 |
1 2 3 4 5
|
noseqrdglem |
|- ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |
75 |
74 16
|
eleqtrrd |
|- ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S ) |
76 |
|
funopfv |
|- ( Fun S -> ( <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
77 |
9 75 76
|
sylc |
|- ( ( ph /\ B e. Z ) -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
78 |
77
|
eqcomd |
|- ( ( ph /\ B e. Z ) -> ( 2nd ` ( R ` ( `' G ` B ) ) ) = ( S ` B ) ) |
79 |
30 78
|
oveq12d |
|- ( ( ph /\ B e. Z ) -> ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( B F ( S ` B ) ) ) |
80 |
37 73 79
|
3eqtrd |
|- ( ( ph /\ B e. Z ) -> ( S ` ( B +s 1s ) ) = ( B F ( S ` B ) ) ) |