Metamath Proof Explorer


Theorem noseqrdgsuc

Description: Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
noseqrdg.1 φ A V
noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
noseqrdg.3 φ S = ran R
Assertion noseqrdgsuc φ B Z S B + s 1 s = B F S B

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 noseqrdg.1 φ A V
5 noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
6 noseqrdg.3 φ S = ran R
7 1 2 3 4 5 6 noseqrdgfn φ S Fn Z
8 7 adantr φ B Z S Fn Z
9 8 fnfund φ B Z Fun S
10 3 adantr φ B Z Z = rec x V x + s 1 s C ω
11 1 adantr φ B Z C No
12 simpr φ B Z B Z
13 10 11 12 noseqp1 φ B Z B + s 1 s Z
14 1 2 3 4 5 noseqrdglem φ B + s 1 s Z B + s 1 s 2 nd R G -1 B + s 1 s ran R
15 13 14 syldan φ B Z B + s 1 s 2 nd R G -1 B + s 1 s ran R
16 6 adantr φ B Z S = ran R
17 15 16 eleqtrrd φ B Z B + s 1 s 2 nd R G -1 B + s 1 s S
18 funopfv Fun S B + s 1 s 2 nd R G -1 B + s 1 s S S B + s 1 s = 2 nd R G -1 B + s 1 s
19 9 17 18 sylc φ B Z S B + s 1 s = 2 nd R G -1 B + s 1 s
20 1 2 3 om2noseqf1o φ G : ω 1-1 onto Z
21 20 adantr φ B Z G : ω 1-1 onto Z
22 f1ocnvdm G : ω 1-1 onto Z B Z G -1 B ω
23 20 22 sylan φ B Z G -1 B ω
24 peano2 G -1 B ω suc G -1 B ω
25 23 24 syl φ B Z suc G -1 B ω
26 21 25 jca φ B Z G : ω 1-1 onto Z suc G -1 B ω
27 2 adantr φ B Z G = rec x V x + s 1 s C ω
28 11 27 23 om2noseqsuc φ B Z G suc G -1 B = G G -1 B + s 1 s
29 f1ocnvfv2 G : ω 1-1 onto Z B Z G G -1 B = B
30 20 29 sylan φ B Z G G -1 B = B
31 30 oveq1d φ B Z G G -1 B + s 1 s = B + s 1 s
32 28 31 eqtrd φ B Z G suc G -1 B = B + s 1 s
33 f1ocnvfv G : ω 1-1 onto Z suc G -1 B ω G suc G -1 B = B + s 1 s G -1 B + s 1 s = suc G -1 B
34 26 32 33 sylc φ B Z G -1 B + s 1 s = suc G -1 B
35 34 fveq2d φ B Z R G -1 B + s 1 s = R suc G -1 B
36 35 fveq2d φ B Z 2 nd R G -1 B + s 1 s = 2 nd R suc G -1 B
37 19 36 eqtrd φ B Z S B + s 1 s = 2 nd R suc G -1 B
38 frsuc G -1 B ω rec x V , y V x + s 1 s x F y C A ω suc G -1 B = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω G -1 B
39 38 adantl φ G -1 B ω rec x V , y V x + s 1 s x F y C A ω suc G -1 B = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω G -1 B
40 5 fveq1d φ R suc G -1 B = rec x V , y V x + s 1 s x F y C A ω suc G -1 B
41 40 adantr φ G -1 B ω R suc G -1 B = rec x V , y V x + s 1 s x F y C A ω suc G -1 B
42 5 fveq1d φ R G -1 B = rec x V , y V x + s 1 s x F y C A ω G -1 B
43 42 fveq2d φ x V , y V x + s 1 s x F y R G -1 B = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω G -1 B
44 43 adantr φ G -1 B ω x V , y V x + s 1 s x F y R G -1 B = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω G -1 B
45 39 41 44 3eqtr4d φ G -1 B ω R suc G -1 B = x V , y V x + s 1 s x F y R G -1 B
46 1 2 3 4 5 om2noseqrdg φ G -1 B ω R G -1 B = G G -1 B 2 nd R G -1 B
47 46 fveq2d φ G -1 B ω x V , y V x + s 1 s x F y R G -1 B = x V , y V x + s 1 s x F y G G -1 B 2 nd R G -1 B
48 df-ov G G -1 B x V , y V x + s 1 s x F y 2 nd R G -1 B = x V , y V x + s 1 s x F y G G -1 B 2 nd R G -1 B
49 47 48 eqtr4di φ G -1 B ω x V , y V x + s 1 s x F y R G -1 B = G G -1 B x V , y V x + s 1 s x F y 2 nd R G -1 B
50 45 49 eqtrd φ G -1 B ω R suc G -1 B = G G -1 B x V , y V x + s 1 s x F y 2 nd R G -1 B
51 fvex G G -1 B V
52 fvex 2 nd R G -1 B V
53 oveq1 z = G G -1 B z + s 1 s = G G -1 B + s 1 s
54 oveq1 z = G G -1 B z F w = G G -1 B F w
55 53 54 opeq12d z = G G -1 B z + s 1 s z F w = G G -1 B + s 1 s G G -1 B F w
56 oveq2 w = 2 nd R G -1 B G G -1 B F w = G G -1 B F 2 nd R G -1 B
57 56 opeq2d w = 2 nd R G -1 B G G -1 B + s 1 s G G -1 B F w = G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B
58 oveq1 x = z x + s 1 s = z + s 1 s
59 oveq1 x = z x F y = z F y
60 58 59 opeq12d x = z x + s 1 s x F y = z + s 1 s z F y
61 oveq2 y = w z F y = z F w
62 61 opeq2d y = w z + s 1 s z F y = z + s 1 s z F w
63 60 62 cbvmpov x V , y V x + s 1 s x F y = z V , w V z + s 1 s z F w
64 opex G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B V
65 55 57 63 64 ovmpo G G -1 B V 2 nd R G -1 B V G G -1 B x V , y V x + s 1 s x F y 2 nd R G -1 B = G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B
66 51 52 65 mp2an G G -1 B x V , y V x + s 1 s x F y 2 nd R G -1 B = G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B
67 50 66 eqtrdi φ G -1 B ω R suc G -1 B = G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B
68 67 fveq2d φ G -1 B ω 2 nd R suc G -1 B = 2 nd G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B
69 ovex G G -1 B + s 1 s V
70 ovex G G -1 B F 2 nd R G -1 B V
71 69 70 op2nd 2 nd G G -1 B + s 1 s G G -1 B F 2 nd R G -1 B = G G -1 B F 2 nd R G -1 B
72 68 71 eqtrdi φ G -1 B ω 2 nd R suc G -1 B = G G -1 B F 2 nd R G -1 B
73 23 72 syldan φ B Z 2 nd R suc G -1 B = G G -1 B F 2 nd R G -1 B
74 1 2 3 4 5 noseqrdglem φ B Z B 2 nd R G -1 B ran R
75 74 16 eleqtrrd φ B Z B 2 nd R G -1 B S
76 funopfv Fun S B 2 nd R G -1 B S S B = 2 nd R G -1 B
77 9 75 76 sylc φ B Z S B = 2 nd R G -1 B
78 77 eqcomd φ B Z 2 nd R G -1 B = S B
79 30 78 oveq12d φ B Z G G -1 B F 2 nd R G -1 B = B F S B
80 37 73 79 3eqtrd φ B Z S B + s 1 s = B F S B