Database
SURREAL NUMBERS
Subsystems of surreals
Surreal recursive sequences
seqsfn
Next ⟩
seqs1
Metamath Proof Explorer
Ascii
Unicode
Theorem
seqsfn
Description:
The surreal sequence builder is a function.
(Contributed by
Scott Fenton
, 19-Apr-2025)
Ref
Expression
Hypotheses
seqsfn.1
⊢
φ
→
M
∈
No
seqsfn.2
⊢
φ
→
Z
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
M
ω
Assertion
seqsfn
⊢
φ
→
seq
s
M
+
˙
F
Fn
Z
Proof
Step
Hyp
Ref
Expression
1
seqsfn.1
⊢
φ
→
M
∈
No
2
seqsfn.2
⊢
φ
→
Z
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
M
ω
3
eqidd
⊢
φ
→
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
↾
ω
=
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
↾
ω
4
oveq1
⊢
x
=
y
→
x
+
s
1
s
=
y
+
s
1
s
5
4
cbvmptv
⊢
x
∈
V
⟼
x
+
s
1
s
=
y
∈
V
⟼
y
+
s
1
s
6
rdgeq1
⊢
x
∈
V
⟼
x
+
s
1
s
=
y
∈
V
⟼
y
+
s
1
s
→
rec
⁡
x
∈
V
⟼
x
+
s
1
s
M
=
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
7
5
6
ax-mp
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
M
=
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
8
7
imaeq1i
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
M
ω
=
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
ω
9
2
8
eqtrdi
⊢
φ
→
Z
=
rec
⁡
y
∈
V
⟼
y
+
s
1
s
M
ω
10
fvexd
⊢
φ
→
F
⁡
M
∈
V
11
eqidd
⊢
φ
→
rec
⁡
y
∈
V
,
z
∈
V
⟼
y
+
s
1
s
y
w
∈
V
,
t
∈
V
⟼
t
+
˙
F
⁡
w
+
s
1
s
z
M
F
⁡
M
↾
ω
=
rec
⁡
y
∈
V
,
z
∈
V
⟼
y
+
s
1
s
y
w
∈
V
,
t
∈
V
⟼
t
+
˙
F
⁡
w
+
s
1
s
z
M
F
⁡
M
↾
ω
12
11
seqsval
⊢
φ
→
seq
s
M
+
˙
F
=
ran
⁡
rec
⁡
y
∈
V
,
z
∈
V
⟼
y
+
s
1
s
y
w
∈
V
,
t
∈
V
⟼
t
+
˙
F
⁡
w
+
s
1
s
z
M
F
⁡
M
↾
ω
13
1
3
9
10
11
12
noseqrdgfn
⊢
φ
→
seq
s
M
+
˙
F
Fn
Z