Metamath Proof Explorer


Theorem seqsfn

Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses seqsfn.1 φ M No
seqsfn.2 φ Z = rec x V x + s 1 s M ω
Assertion seqsfn φ seq s M + ˙ F Fn Z

Proof

Step Hyp Ref Expression
1 seqsfn.1 φ M No
2 seqsfn.2 φ Z = rec x V x + s 1 s M ω
3 eqidd φ rec y V y + s 1 s M ω = rec y V y + s 1 s M ω
4 oveq1 x = y x + s 1 s = y + s 1 s
5 4 cbvmptv x V x + s 1 s = y V y + s 1 s
6 rdgeq1 x V x + s 1 s = y V y + s 1 s rec x V x + s 1 s M = rec y V y + s 1 s M
7 5 6 ax-mp rec x V x + s 1 s M = rec y V y + s 1 s M
8 7 imaeq1i rec x V x + s 1 s M ω = rec y V y + s 1 s M ω
9 2 8 eqtrdi φ Z = rec y V y + s 1 s M ω
10 fvexd φ F M V
11 eqidd φ rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω = rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω
12 11 seqsval φ seq s M + ˙ F = ran rec y V , z V y + s 1 s y w V , t V t + ˙ F w + s 1 s z M F M ω
13 1 3 9 10 11 12 noseqrdgfn φ seq s M + ˙ F Fn Z