Metamath Proof Explorer


Theorem seqsfn

Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses seqsfn.1
|- ( ph -> M e. No )
seqsfn.2
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) )
Assertion seqsfn
|- ( ph -> seq_s M ( .+ , F ) Fn Z )

Proof

Step Hyp Ref Expression
1 seqsfn.1
 |-  ( ph -> M e. No )
2 seqsfn.2
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) )
3 eqidd
 |-  ( ph -> ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) )
4 oveq1
 |-  ( x = y -> ( x +s 1s ) = ( y +s 1s ) )
5 4 cbvmptv
 |-  ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) )
6 rdgeq1
 |-  ( ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) -> rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) )
7 5 6 ax-mp
 |-  rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M )
8 7 imaeq1i
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om )
9 2 8 eqtrdi
 |-  ( ph -> Z = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) )
10 fvexd
 |-  ( ph -> ( F ` M ) e. _V )
11 eqidd
 |-  ( ph -> ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) )
12 11 seqsval
 |-  ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) )
13 1 3 9 10 11 12 noseqrdgfn
 |-  ( ph -> seq_s M ( .+ , F ) Fn Z )