| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqsfn.1 |  |-  ( ph -> M e. No ) | 
						
							| 2 |  | seqsfn.2 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) ) | 
						
							| 3 |  | eqidd |  |-  ( ph -> ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) ) | 
						
							| 4 |  | oveq1 |  |-  ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) | 
						
							| 5 | 4 | cbvmptv |  |-  ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) | 
						
							| 6 |  | rdgeq1 |  |-  ( ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) -> rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) | 
						
							| 8 | 7 | imaeq1i |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) | 
						
							| 9 | 2 8 | eqtrdi |  |-  ( ph -> Z = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) ) | 
						
							| 10 |  | fvexd |  |-  ( ph -> ( F ` M ) e. _V ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) | 
						
							| 12 | 11 | seqsval |  |-  ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) | 
						
							| 13 | 1 3 9 10 11 12 | noseqrdgfn |  |-  ( ph -> seq_s M ( .+ , F ) Fn Z ) |