Step |
Hyp |
Ref |
Expression |
1 |
|
seqsfn.1 |
|- ( ph -> M e. No ) |
2 |
|
seqsfn.2 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) ) |
3 |
|
eqidd |
|- ( ph -> ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |` _om ) ) |
4 |
|
oveq1 |
|- ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) |
5 |
4
|
cbvmptv |
|- ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) |
6 |
|
rdgeq1 |
|- ( ( x e. _V |-> ( x +s 1s ) ) = ( y e. _V |-> ( y +s 1s ) ) -> rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) ) |
7 |
5 6
|
ax-mp |
|- rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) = rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) |
8 |
7
|
imaeq1i |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) |
9 |
2 8
|
eqtrdi |
|- ( ph -> Z = ( rec ( ( y e. _V |-> ( y +s 1s ) ) , M ) " _om ) ) |
10 |
|
fvexd |
|- ( ph -> ( F ` M ) e. _V ) |
11 |
|
eqidd |
|- ( ph -> ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
12 |
11
|
seqsval |
|- ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( y e. _V , z e. _V |-> <. ( y +s 1s ) , ( y ( w e. _V , t e. _V |-> ( t .+ ( F ` ( w +s 1s ) ) ) ) z ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
13 |
1 3 9 10 11 12
|
noseqrdgfn |
|- ( ph -> seq_s M ( .+ , F ) Fn Z ) |