Description: The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | seqs1.1 | |- ( ph -> M e. No ) |
|
Assertion | seqs1 | |- ( ph -> ( seq_s M ( .+ , F ) ` M ) = ( F ` M ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqs1.1 | |- ( ph -> M e. No ) |
|
2 | eqidd | |- ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) |` _om ) ) |
|
3 | eqidd | |- ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) ) |
|
4 | fvexd | |- ( ph -> ( F ` M ) e. _V ) |
|
5 | eqidd | |- ( ph -> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
|
6 | 5 | seqsval | |- ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) ) |
7 | 1 2 3 4 5 6 | noseqrdg0 | |- ( ph -> ( seq_s M ( .+ , F ) ` M ) = ( F ` M ) ) |