Metamath Proof Explorer


Theorem seqs1

Description: The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypothesis seqs1.1
|- ( ph -> M e. No )
Assertion seqs1
|- ( ph -> ( seq_s M ( .+ , F ) ` M ) = ( F ` M ) )

Proof

Step Hyp Ref Expression
1 seqs1.1
 |-  ( ph -> M e. No )
2 eqidd
 |-  ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) |` _om ) )
3 eqidd
 |-  ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , M ) " _om ) )
4 fvexd
 |-  ( ph -> ( F ` M ) e. _V )
5 eqidd
 |-  ( ph -> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) )
6 5 seqsval
 |-  ( ph -> seq_s M ( .+ , F ) = ran ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x ( z e. _V , w e. _V |-> ( w .+ ( F ` ( z +s 1s ) ) ) ) y ) >. ) , <. M , ( F ` M ) >. ) |` _om ) )
7 1 2 3 4 5 6 noseqrdg0
 |-  ( ph -> ( seq_s M ( .+ , F ) ` M ) = ( F ` M ) )