| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
|
noseqrdg.1 |
|- ( ph -> A e. V ) |
| 5 |
|
noseqrdg.2 |
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) |
| 6 |
|
noseqrdg.3 |
|- ( ph -> S = ran R ) |
| 7 |
1 2 3 4 5 6
|
noseqrdgfn |
|- ( ph -> S Fn Z ) |
| 8 |
7
|
fnfund |
|- ( ph -> Fun S ) |
| 9 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
| 10 |
5
|
fneq1d |
|- ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) |
| 11 |
9 10
|
mpbiri |
|- ( ph -> R Fn _om ) |
| 12 |
|
peano1 |
|- (/) e. _om |
| 13 |
|
fnfvelrn |
|- ( ( R Fn _om /\ (/) e. _om ) -> ( R ` (/) ) e. ran R ) |
| 14 |
11 12 13
|
sylancl |
|- ( ph -> ( R ` (/) ) e. ran R ) |
| 15 |
5
|
fveq1d |
|- ( ph -> ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) ) |
| 16 |
|
opex |
|- <. C , A >. e. _V |
| 17 |
|
fr0g |
|- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
| 18 |
16 17
|
ax-mp |
|- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 19 |
15 18
|
eqtr2di |
|- ( ph -> <. C , A >. = ( R ` (/) ) ) |
| 20 |
14 19 6
|
3eltr4d |
|- ( ph -> <. C , A >. e. S ) |
| 21 |
|
funopfv |
|- ( Fun S -> ( <. C , A >. e. S -> ( S ` C ) = A ) ) |
| 22 |
8 20 21
|
sylc |
|- ( ph -> ( S ` C ) = A ) |