| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 |  | noseqrdg.1 |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | noseqrdg.2 |  |-  ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) | 
						
							| 6 |  | noseqrdg.3 |  |-  ( ph -> S = ran R ) | 
						
							| 7 | 1 2 3 4 5 6 | noseqrdgfn |  |-  ( ph -> S Fn Z ) | 
						
							| 8 | 7 | fnfund |  |-  ( ph -> Fun S ) | 
						
							| 9 |  | frfnom |  |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om | 
						
							| 10 | 5 | fneq1d |  |-  ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) | 
						
							| 11 | 9 10 | mpbiri |  |-  ( ph -> R Fn _om ) | 
						
							| 12 |  | peano1 |  |-  (/) e. _om | 
						
							| 13 |  | fnfvelrn |  |-  ( ( R Fn _om /\ (/) e. _om ) -> ( R ` (/) ) e. ran R ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ph -> ( R ` (/) ) e. ran R ) | 
						
							| 15 | 5 | fveq1d |  |-  ( ph -> ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) ) | 
						
							| 16 |  | opex |  |-  <. C , A >. e. _V | 
						
							| 17 |  | fr0g |  |-  ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) | 
						
							| 18 | 16 17 | ax-mp |  |-  ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. | 
						
							| 19 | 15 18 | eqtr2di |  |-  ( ph -> <. C , A >. = ( R ` (/) ) ) | 
						
							| 20 | 14 19 6 | 3eltr4d |  |-  ( ph -> <. C , A >. e. S ) | 
						
							| 21 |  | funopfv |  |-  ( Fun S -> ( <. C , A >. e. S -> ( S ` C ) = A ) ) | 
						
							| 22 | 8 20 21 | sylc |  |-  ( ph -> ( S ` C ) = A ) |