Metamath Proof Explorer


Theorem noseqrdg0

Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
noseqrdg.1 φ A V
noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
noseqrdg.3 φ S = ran R
Assertion noseqrdg0 φ S C = A

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 noseqrdg.1 φ A V
5 noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
6 noseqrdg.3 φ S = ran R
7 1 2 3 4 5 6 noseqrdgfn φ S Fn Z
8 7 fnfund φ Fun S
9 frfnom rec x V , y V x + s 1 s x F y C A ω Fn ω
10 5 fneq1d φ R Fn ω rec x V , y V x + s 1 s x F y C A ω Fn ω
11 9 10 mpbiri φ R Fn ω
12 peano1 ω
13 fnfvelrn R Fn ω ω R ran R
14 11 12 13 sylancl φ R ran R
15 5 fveq1d φ R = rec x V , y V x + s 1 s x F y C A ω
16 opex C A V
17 fr0g C A V rec x V , y V x + s 1 s x F y C A ω = C A
18 16 17 ax-mp rec x V , y V x + s 1 s x F y C A ω = C A
19 15 18 eqtr2di φ C A = R
20 14 19 6 3eltr4d φ C A S
21 funopfv Fun S C A S S C = A
22 8 20 21 sylc φ S C = A