Metamath Proof Explorer


Theorem noseqrdgfn

Description: The recursive definition generator on surreal sequences is a function. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
noseqrdg.1 φ A V
noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
noseqrdg.3 φ S = ran R
Assertion noseqrdgfn φ S Fn Z

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 noseqrdg.1 φ A V
5 noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
6 noseqrdg.3 φ S = ran R
7 6 eleq2d φ z S z ran R
8 frfnom rec x V , y V x + s 1 s x F y C A ω Fn ω
9 5 fneq1d φ R Fn ω rec x V , y V x + s 1 s x F y C A ω Fn ω
10 8 9 mpbiri φ R Fn ω
11 fvelrnb R Fn ω z ran R w ω R w = z
12 10 11 syl φ z ran R w ω R w = z
13 7 12 bitrd φ z S w ω R w = z
14 1 2 3 4 5 om2noseqrdg φ w ω R w = G w 2 nd R w
15 1 2 3 om2noseqfo φ G : ω onto Z
16 fof G : ω onto Z G : ω Z
17 15 16 syl φ G : ω Z
18 17 ffvelcdmda φ w ω G w Z
19 fvex 2 nd R w V
20 opelxpi G w Z 2 nd R w V G w 2 nd R w Z × V
21 18 19 20 sylancl φ w ω G w 2 nd R w Z × V
22 14 21 eqeltrd φ w ω R w Z × V
23 eleq1 R w = z R w Z × V z Z × V
24 22 23 syl5ibcom φ w ω R w = z z Z × V
25 24 rexlimdva φ w ω R w = z z Z × V
26 13 25 sylbid φ z S z Z × V
27 26 ssrdv φ S Z × V
28 relxp Rel Z × V
29 relss S Z × V Rel Z × V Rel S
30 27 28 29 mpisyl φ Rel S
31 6 eleq2d φ v z S v z ran R
32 fvelrnb R Fn ω v z ran R w ω R w = v z
33 10 32 syl φ v z ran R w ω R w = v z
34 31 33 bitrd φ v z S w ω R w = v z
35 14 eqeq1d φ w ω R w = v z G w 2 nd R w = v z
36 35 biimpd φ w ω R w = v z G w 2 nd R w = v z
37 36 impr φ w ω R w = v z G w 2 nd R w = v z
38 fvex G w V
39 38 19 opth1 G w 2 nd R w = v z G w = v
40 37 39 syl φ w ω R w = v z G w = v
41 1 2 3 om2noseqf1o φ G : ω 1-1 onto Z
42 f1ocnvfv G : ω 1-1 onto Z w ω G w = v G -1 v = w
43 41 42 sylan φ w ω G w = v G -1 v = w
44 43 adantrr φ w ω R w = v z G w = v G -1 v = w
45 40 44 mpd φ w ω R w = v z G -1 v = w
46 45 fveq2d φ w ω R w = v z R G -1 v = R w
47 46 fveq2d φ w ω R w = v z 2 nd R G -1 v = 2 nd R w
48 vex v V
49 vex z V
50 48 49 op2ndd R w = v z 2 nd R w = z
51 50 ad2antll φ w ω R w = v z 2 nd R w = z
52 47 51 eqtr2d φ w ω R w = v z z = 2 nd R G -1 v
53 52 rexlimdvaa φ w ω R w = v z z = 2 nd R G -1 v
54 34 53 sylbid φ v z S z = 2 nd R G -1 v
55 54 alrimiv φ z v z S z = 2 nd R G -1 v
56 fvex 2 nd R G -1 v V
57 eqeq2 w = 2 nd R G -1 v z = w z = 2 nd R G -1 v
58 57 imbi2d w = 2 nd R G -1 v v z S z = w v z S z = 2 nd R G -1 v
59 58 albidv w = 2 nd R G -1 v z v z S z = w z v z S z = 2 nd R G -1 v
60 56 59 spcev z v z S z = 2 nd R G -1 v w z v z S z = w
61 55 60 syl φ w z v z S z = w
62 61 alrimiv φ v w z v z S z = w
63 dffun5 Fun S Rel S v w z v z S z = w
64 30 62 63 sylanbrc φ Fun S
65 dmss S Z × V dom S dom Z × V
66 27 65 syl φ dom S dom Z × V
67 dmxpss dom Z × V Z
68 66 67 sstrdi φ dom S Z
69 1 2 3 4 5 noseqrdglem φ v Z v 2 nd R G -1 v ran R
70 6 adantr φ v Z S = ran R
71 69 70 eleqtrrd φ v Z v 2 nd R G -1 v S
72 48 56 opeldm v 2 nd R G -1 v S v dom S
73 71 72 syl φ v Z v dom S
74 68 73 eqelssd φ dom S = Z
75 df-fn S Fn Z Fun S dom S = Z
76 64 74 75 sylanbrc φ S Fn Z