Metamath Proof Explorer


Theorem om2noseqrdg

Description: A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function F ( x , y ) and initial value A . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
noseqrdg.1 φ A V
noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
Assertion om2noseqrdg φ B ω R B = G B 2 nd R B

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 noseqrdg.1 φ A V
5 noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
6 fveq2 z = R z = R
7 fveq2 z = G z = G
8 2fveq3 z = 2 nd R z = 2 nd R
9 7 8 opeq12d z = G z 2 nd R z = G 2 nd R
10 6 9 eqeq12d z = R z = G z 2 nd R z R = G 2 nd R
11 10 imbi2d z = φ R z = G z 2 nd R z φ R = G 2 nd R
12 fveq2 z = v R z = R v
13 fveq2 z = v G z = G v
14 2fveq3 z = v 2 nd R z = 2 nd R v
15 13 14 opeq12d z = v G z 2 nd R z = G v 2 nd R v
16 12 15 eqeq12d z = v R z = G z 2 nd R z R v = G v 2 nd R v
17 16 imbi2d z = v φ R z = G z 2 nd R z φ R v = G v 2 nd R v
18 fveq2 z = suc v R z = R suc v
19 fveq2 z = suc v G z = G suc v
20 2fveq3 z = suc v 2 nd R z = 2 nd R suc v
21 19 20 opeq12d z = suc v G z 2 nd R z = G suc v 2 nd R suc v
22 18 21 eqeq12d z = suc v R z = G z 2 nd R z R suc v = G suc v 2 nd R suc v
23 22 imbi2d z = suc v φ R z = G z 2 nd R z φ R suc v = G suc v 2 nd R suc v
24 fveq2 z = B R z = R B
25 fveq2 z = B G z = G B
26 2fveq3 z = B 2 nd R z = 2 nd R B
27 25 26 opeq12d z = B G z 2 nd R z = G B 2 nd R B
28 24 27 eqeq12d z = B R z = G z 2 nd R z R B = G B 2 nd R B
29 28 imbi2d z = B φ R z = G z 2 nd R z φ R B = G B 2 nd R B
30 5 fveq1d φ R = rec x V , y V x + s 1 s x F y C A ω
31 opex C A V
32 fr0g C A V rec x V , y V x + s 1 s x F y C A ω = C A
33 31 32 ax-mp rec x V , y V x + s 1 s x F y C A ω = C A
34 30 33 eqtrdi φ R = C A
35 1 2 om2noseq0 φ G = C
36 34 fveq2d φ 2 nd R = 2 nd C A
37 op2ndg C No A V 2 nd C A = A
38 1 4 37 syl2anc φ 2 nd C A = A
39 36 38 eqtrd φ 2 nd R = A
40 35 39 opeq12d φ G 2 nd R = C A
41 34 40 eqtr4d φ R = G 2 nd R
42 frsuc v ω rec x V , y V x + s 1 s x F y C A ω suc v = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω v
43 42 adantl φ v ω rec x V , y V x + s 1 s x F y C A ω suc v = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω v
44 5 fveq1d φ R suc v = rec x V , y V x + s 1 s x F y C A ω suc v
45 44 adantr φ v ω R suc v = rec x V , y V x + s 1 s x F y C A ω suc v
46 5 fveq1d φ R v = rec x V , y V x + s 1 s x F y C A ω v
47 46 fveq2d φ x V , y V x + s 1 s x F y R v = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω v
48 47 adantr φ v ω x V , y V x + s 1 s x F y R v = x V , y V x + s 1 s x F y rec x V , y V x + s 1 s x F y C A ω v
49 43 45 48 3eqtr4d φ v ω R suc v = x V , y V x + s 1 s x F y R v
50 49 adantrr φ v ω R v = G v 2 nd R v R suc v = x V , y V x + s 1 s x F y R v
51 fveq2 R v = G v 2 nd R v x V , y V x + s 1 s x F y R v = x V , y V x + s 1 s x F y G v 2 nd R v
52 df-ov G v x V , y V x + s 1 s x F y 2 nd R v = x V , y V x + s 1 s x F y G v 2 nd R v
53 fvex G v V
54 fvex 2 nd R v V
55 oveq1 w = G v w + s 1 s = G v + s 1 s
56 oveq1 w = G v w F z = G v F z
57 55 56 opeq12d w = G v w + s 1 s w F z = G v + s 1 s G v F z
58 oveq2 z = 2 nd R v G v F z = G v F 2 nd R v
59 58 opeq2d z = 2 nd R v G v + s 1 s G v F z = G v + s 1 s G v F 2 nd R v
60 oveq1 x = w x + s 1 s = w + s 1 s
61 oveq1 x = w x F y = w F y
62 60 61 opeq12d x = w x + s 1 s x F y = w + s 1 s w F y
63 oveq2 y = z w F y = w F z
64 63 opeq2d y = z w + s 1 s w F y = w + s 1 s w F z
65 62 64 cbvmpov x V , y V x + s 1 s x F y = w V , z V w + s 1 s w F z
66 opex G v + s 1 s G v F 2 nd R v V
67 57 59 65 66 ovmpo G v V 2 nd R v V G v x V , y V x + s 1 s x F y 2 nd R v = G v + s 1 s G v F 2 nd R v
68 53 54 67 mp2an G v x V , y V x + s 1 s x F y 2 nd R v = G v + s 1 s G v F 2 nd R v
69 52 68 eqtr3i x V , y V x + s 1 s x F y G v 2 nd R v = G v + s 1 s G v F 2 nd R v
70 51 69 eqtrdi R v = G v 2 nd R v x V , y V x + s 1 s x F y R v = G v + s 1 s G v F 2 nd R v
71 70 ad2antll φ v ω R v = G v 2 nd R v x V , y V x + s 1 s x F y R v = G v + s 1 s G v F 2 nd R v
72 50 71 eqtrd φ v ω R v = G v 2 nd R v R suc v = G v + s 1 s G v F 2 nd R v
73 1 adantr φ v ω C No
74 2 adantr φ v ω G = rec x V x + s 1 s C ω
75 simpr φ v ω v ω
76 73 74 75 om2noseqsuc φ v ω G suc v = G v + s 1 s
77 76 adantrr φ v ω R v = G v 2 nd R v G suc v = G v + s 1 s
78 72 fveq2d φ v ω R v = G v 2 nd R v 2 nd R suc v = 2 nd G v + s 1 s G v F 2 nd R v
79 ovex G v + s 1 s V
80 ovex G v F 2 nd R v V
81 79 80 op2nd 2 nd G v + s 1 s G v F 2 nd R v = G v F 2 nd R v
82 78 81 eqtrdi φ v ω R v = G v 2 nd R v 2 nd R suc v = G v F 2 nd R v
83 77 82 opeq12d φ v ω R v = G v 2 nd R v G suc v 2 nd R suc v = G v + s 1 s G v F 2 nd R v
84 72 83 eqtr4d φ v ω R v = G v 2 nd R v R suc v = G suc v 2 nd R suc v
85 84 exp32 φ v ω R v = G v 2 nd R v R suc v = G suc v 2 nd R suc v
86 85 com12 v ω φ R v = G v 2 nd R v R suc v = G suc v 2 nd R suc v
87 86 a2d v ω φ R v = G v 2 nd R v φ R suc v = G suc v 2 nd R suc v
88 11 17 23 29 41 87 finds B ω φ R B = G B 2 nd R B
89 88 impcom φ B ω R B = G B 2 nd R B