Metamath Proof Explorer


Theorem om2noseqsuc

Description: The value of G at a successor. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseqsuc.3 φ A ω
Assertion om2noseqsuc φ G suc A = G A + s 1 s

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseqsuc.3 φ A ω
4 ovex rec x V x + s 1 s C ω A + s 1 s V
5 eqid rec x V x + s 1 s C ω = rec x V x + s 1 s C ω
6 oveq1 y = x y + s 1 s = x + s 1 s
7 oveq1 y = rec x V x + s 1 s C ω A y + s 1 s = rec x V x + s 1 s C ω A + s 1 s
8 5 6 7 frsucmpt2 A ω rec x V x + s 1 s C ω A + s 1 s V rec x V x + s 1 s C ω suc A = rec x V x + s 1 s C ω A + s 1 s
9 3 4 8 sylancl φ rec x V x + s 1 s C ω suc A = rec x V x + s 1 s C ω A + s 1 s
10 2 fveq1d φ G suc A = rec x V x + s 1 s C ω suc A
11 2 fveq1d φ G A = rec x V x + s 1 s C ω A
12 11 oveq1d φ G A + s 1 s = rec x V x + s 1 s C ω A + s 1 s
13 9 10 12 3eqtr4d φ G suc A = G A + s 1 s