Database
SURREAL NUMBERS
Subsystems of surreals
Surreal recursive sequences
om2noseqsuc
Next ⟩
om2noseqfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
om2noseqsuc
Description:
The value of
G
at a successor.
(Contributed by
Scott Fenton
, 18-Apr-2025)
Ref
Expression
Hypotheses
om2noseq.1
⊢
φ
→
C
∈
No
om2noseq.2
⊢
φ
→
G
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
om2noseqsuc.3
⊢
φ
→
A
∈
ω
Assertion
om2noseqsuc
⊢
φ
→
G
⁡
suc
⁡
A
=
G
⁡
A
+
s
1
s
Proof
Step
Hyp
Ref
Expression
1
om2noseq.1
⊢
φ
→
C
∈
No
2
om2noseq.2
⊢
φ
→
G
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
3
om2noseqsuc.3
⊢
φ
→
A
∈
ω
4
ovex
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
∈
V
5
eqid
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
6
oveq1
⊢
y
=
x
→
y
+
s
1
s
=
x
+
s
1
s
7
oveq1
⊢
y
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
→
y
+
s
1
s
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
8
5
6
7
frsucmpt2
⊢
A
∈
ω
∧
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
∈
V
→
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
suc
⁡
A
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
9
3
4
8
sylancl
⊢
φ
→
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
suc
⁡
A
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
10
2
fveq1d
⊢
φ
→
G
⁡
suc
⁡
A
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
suc
⁡
A
11
2
fveq1d
⊢
φ
→
G
⁡
A
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
12
11
oveq1d
⊢
φ
→
G
⁡
A
+
s
1
s
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
⁡
A
+
s
1
s
13
9
10
12
3eqtr4d
⊢
φ
→
G
⁡
suc
⁡
A
=
G
⁡
A
+
s
1
s