Metamath Proof Explorer


Theorem om2noseqsuc

Description: The value of G at a successor. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseqsuc.3 ( 𝜑𝐴 ∈ ω )
Assertion om2noseqsuc ( 𝜑 → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺𝐴 ) +s 1s ) )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseqsuc.3 ( 𝜑𝐴 ∈ ω )
4 ovex ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ∈ V
5 eqid ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω )
6 oveq1 ( 𝑦 = 𝑥 → ( 𝑦 +s 1s ) = ( 𝑥 +s 1s ) )
7 oveq1 ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) → ( 𝑦 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) )
8 5 6 7 frsucmpt2 ( ( 𝐴 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) )
9 3 4 8 sylancl ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) )
10 2 fveq1d ( 𝜑 → ( 𝐺 ‘ suc 𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) )
11 2 fveq1d ( 𝜑 → ( 𝐺𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) )
12 11 oveq1d ( 𝜑 → ( ( 𝐺𝐴 ) +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) )
13 9 10 12 3eqtr4d ( 𝜑 → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺𝐴 ) +s 1s ) )