| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseqsuc.3 | ⊢ ( 𝜑  →  𝐴  ∈  ω ) | 
						
							| 4 |  | ovex | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  )  ∈  V | 
						
							| 5 |  | eqid | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  +s   1s  )  =  ( 𝑥  +s   1s  ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  →  ( 𝑦  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 8 | 5 6 7 | frsucmpt2 | ⊢ ( ( 𝐴  ∈  ω  ∧  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  )  ∈  V )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ suc  𝐴 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 9 | 3 4 8 | sylancl | ⊢ ( 𝜑  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ suc  𝐴 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 10 | 2 | fveq1d | ⊢ ( 𝜑  →  ( 𝐺 ‘ suc  𝐴 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ suc  𝐴 ) ) | 
						
							| 11 | 2 | fveq1d | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐴 )  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 13 | 9 10 12 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺 ‘ suc  𝐴 )  =  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) |