Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseqsuc.3 |
⊢ ( 𝜑 → 𝐴 ∈ ω ) |
4 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ∈ V |
5 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) |
6 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 +s 1s ) = ( 𝑥 +s 1s ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) → ( 𝑦 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ) |
8 |
5 6 7
|
frsucmpt2 |
⊢ ( ( 𝐴 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ) |
9 |
3 4 8
|
sylancl |
⊢ ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ) |
10 |
2
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ suc 𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ suc 𝐴 ) ) |
11 |
2
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐴 ) +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ‘ 𝐴 ) +s 1s ) ) |
13 |
9 10 12
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) |