Metamath Proof Explorer


Theorem noseqrdglem

Description: A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
noseqrdg.1 φ A V
noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
Assertion noseqrdglem φ B Z B 2 nd R G -1 B ran R

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 noseqrdg.1 φ A V
5 noseqrdg.2 φ R = rec x V , y V x + s 1 s x F y C A ω
6 1 2 3 om2noseqf1o φ G : ω 1-1 onto Z
7 f1ocnvdm G : ω 1-1 onto Z B Z G -1 B ω
8 6 7 sylan φ B Z G -1 B ω
9 1 2 3 4 5 om2noseqrdg φ G -1 B ω R G -1 B = G G -1 B 2 nd R G -1 B
10 8 9 syldan φ B Z R G -1 B = G G -1 B 2 nd R G -1 B
11 f1ocnvfv2 G : ω 1-1 onto Z B Z G G -1 B = B
12 6 11 sylan φ B Z G G -1 B = B
13 12 opeq1d φ B Z G G -1 B 2 nd R G -1 B = B 2 nd R G -1 B
14 10 13 eqtrd φ B Z R G -1 B = B 2 nd R G -1 B
15 frfnom rec x V , y V x + s 1 s x F y C A ω Fn ω
16 5 fneq1d φ R Fn ω rec x V , y V x + s 1 s x F y C A ω Fn ω
17 15 16 mpbiri φ R Fn ω
18 17 adantr φ B Z R Fn ω
19 18 8 fnfvelrnd φ B Z R G -1 B ran R
20 14 19 eqeltrrd φ B Z B 2 nd R G -1 B ran R