| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 |  | noseqrdg.1 |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | noseqrdg.2 |  |-  ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) | 
						
							| 6 | 1 2 3 | om2noseqf1o |  |-  ( ph -> G : _om -1-1-onto-> Z ) | 
						
							| 7 |  | f1ocnvdm |  |-  ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( `' G ` B ) e. _om ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( ph /\ B e. Z ) -> ( `' G ` B ) e. _om ) | 
						
							| 9 | 1 2 3 4 5 | om2noseqrdg |  |-  ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) | 
						
							| 10 | 8 9 | syldan |  |-  ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) | 
						
							| 11 |  | f1ocnvfv2 |  |-  ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) | 
						
							| 12 | 6 11 | sylan |  |-  ( ( ph /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) | 
						
							| 13 | 12 | opeq1d |  |-  ( ( ph /\ B e. Z ) -> <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) | 
						
							| 14 | 10 13 | eqtrd |  |-  ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) | 
						
							| 15 |  | frfnom |  |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om | 
						
							| 16 | 5 | fneq1d |  |-  ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) | 
						
							| 17 | 15 16 | mpbiri |  |-  ( ph -> R Fn _om ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ B e. Z ) -> R Fn _om ) | 
						
							| 19 | 18 8 | fnfvelrnd |  |-  ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) e. ran R ) | 
						
							| 20 | 14 19 | eqeltrrd |  |-  ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |