| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
|
noseqrdg.1 |
|- ( ph -> A e. V ) |
| 5 |
|
noseqrdg.2 |
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) |
| 6 |
1 2 3
|
om2noseqf1o |
|- ( ph -> G : _om -1-1-onto-> Z ) |
| 7 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( `' G ` B ) e. _om ) |
| 8 |
6 7
|
sylan |
|- ( ( ph /\ B e. Z ) -> ( `' G ` B ) e. _om ) |
| 9 |
1 2 3 4 5
|
om2noseqrdg |
|- ( ( ph /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 10 |
8 9
|
syldan |
|- ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 11 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> Z /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) |
| 12 |
6 11
|
sylan |
|- ( ( ph /\ B e. Z ) -> ( G ` ( `' G ` B ) ) = B ) |
| 13 |
12
|
opeq1d |
|- ( ( ph /\ B e. Z ) -> <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 14 |
10 13
|
eqtrd |
|- ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 15 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
| 16 |
5
|
fneq1d |
|- ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ph -> R Fn _om ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ B e. Z ) -> R Fn _om ) |
| 19 |
18 8
|
fnfvelrnd |
|- ( ( ph /\ B e. Z ) -> ( R ` ( `' G ` B ) ) e. ran R ) |
| 20 |
14 19
|
eqeltrrd |
|- ( ( ph /\ B e. Z ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |