| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 |  | noseqrdg.1 |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | noseqrdg.2 |  |-  ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) | 
						
							| 6 |  | noseqrdg.3 |  |-  ( ph -> S = ran R ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ph -> ( z e. S <-> z e. ran R ) ) | 
						
							| 8 |  | frfnom |  |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om | 
						
							| 9 | 5 | fneq1d |  |-  ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) | 
						
							| 10 | 8 9 | mpbiri |  |-  ( ph -> R Fn _om ) | 
						
							| 11 |  | fvelrnb |  |-  ( R Fn _om -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) | 
						
							| 13 | 7 12 | bitrd |  |-  ( ph -> ( z e. S <-> E. w e. _om ( R ` w ) = z ) ) | 
						
							| 14 | 1 2 3 4 5 | om2noseqrdg |  |-  ( ( ph /\ w e. _om ) -> ( R ` w ) = <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. ) | 
						
							| 15 | 1 2 3 | om2noseqfo |  |-  ( ph -> G : _om -onto-> Z ) | 
						
							| 16 |  | fof |  |-  ( G : _om -onto-> Z -> G : _om --> Z ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> G : _om --> Z ) | 
						
							| 18 | 17 | ffvelcdmda |  |-  ( ( ph /\ w e. _om ) -> ( G ` w ) e. Z ) | 
						
							| 19 |  | fvex |  |-  ( 2nd ` ( R ` w ) ) e. _V | 
						
							| 20 |  | opelxpi |  |-  ( ( ( G ` w ) e. Z /\ ( 2nd ` ( R ` w ) ) e. _V ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( Z X. _V ) ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( ( ph /\ w e. _om ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( Z X. _V ) ) | 
						
							| 22 | 14 21 | eqeltrd |  |-  ( ( ph /\ w e. _om ) -> ( R ` w ) e. ( Z X. _V ) ) | 
						
							| 23 |  | eleq1 |  |-  ( ( R ` w ) = z -> ( ( R ` w ) e. ( Z X. _V ) <-> z e. ( Z X. _V ) ) ) | 
						
							| 24 | 22 23 | syl5ibcom |  |-  ( ( ph /\ w e. _om ) -> ( ( R ` w ) = z -> z e. ( Z X. _V ) ) ) | 
						
							| 25 | 24 | rexlimdva |  |-  ( ph -> ( E. w e. _om ( R ` w ) = z -> z e. ( Z X. _V ) ) ) | 
						
							| 26 | 13 25 | sylbid |  |-  ( ph -> ( z e. S -> z e. ( Z X. _V ) ) ) | 
						
							| 27 | 26 | ssrdv |  |-  ( ph -> S C_ ( Z X. _V ) ) | 
						
							| 28 |  | relxp |  |-  Rel ( Z X. _V ) | 
						
							| 29 |  | relss |  |-  ( S C_ ( Z X. _V ) -> ( Rel ( Z X. _V ) -> Rel S ) ) | 
						
							| 30 | 27 28 29 | mpisyl |  |-  ( ph -> Rel S ) | 
						
							| 31 | 6 | eleq2d |  |-  ( ph -> ( <. v , z >. e. S <-> <. v , z >. e. ran R ) ) | 
						
							| 32 |  | fvelrnb |  |-  ( R Fn _om -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) | 
						
							| 33 | 10 32 | syl |  |-  ( ph -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) | 
						
							| 34 | 31 33 | bitrd |  |-  ( ph -> ( <. v , z >. e. S <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) | 
						
							| 35 | 14 | eqeq1d |  |-  ( ( ph /\ w e. _om ) -> ( ( R ` w ) = <. v , z >. <-> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) | 
						
							| 36 | 35 | biimpd |  |-  ( ( ph /\ w e. _om ) -> ( ( R ` w ) = <. v , z >. -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) | 
						
							| 37 | 36 | impr |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) | 
						
							| 38 |  | fvex |  |-  ( G ` w ) e. _V | 
						
							| 39 | 38 19 | opth1 |  |-  ( <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. -> ( G ` w ) = v ) | 
						
							| 40 | 37 39 | syl |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( G ` w ) = v ) | 
						
							| 41 | 1 2 3 | om2noseqf1o |  |-  ( ph -> G : _om -1-1-onto-> Z ) | 
						
							| 42 |  | f1ocnvfv |  |-  ( ( G : _om -1-1-onto-> Z /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) | 
						
							| 43 | 41 42 | sylan |  |-  ( ( ph /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) | 
						
							| 44 | 43 | adantrr |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) | 
						
							| 45 | 40 44 | mpd |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( `' G ` v ) = w ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( R ` ( `' G ` v ) ) = ( R ` w ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) | 
						
							| 48 |  | vex |  |-  v e. _V | 
						
							| 49 |  | vex |  |-  z e. _V | 
						
							| 50 | 48 49 | op2ndd |  |-  ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` w ) ) = z ) | 
						
							| 51 | 50 | ad2antll |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( 2nd ` ( R ` w ) ) = z ) | 
						
							| 52 | 47 51 | eqtr2d |  |-  ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) | 
						
							| 53 | 52 | rexlimdvaa |  |-  ( ph -> ( E. w e. _om ( R ` w ) = <. v , z >. -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) | 
						
							| 54 | 34 53 | sylbid |  |-  ( ph -> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) | 
						
							| 55 | 54 | alrimiv |  |-  ( ph -> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) | 
						
							| 56 |  | fvex |  |-  ( 2nd ` ( R ` ( `' G ` v ) ) ) e. _V | 
						
							| 57 |  | eqeq2 |  |-  ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( z = w <-> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) | 
						
							| 58 | 57 | imbi2d |  |-  ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( ( <. v , z >. e. S -> z = w ) <-> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) | 
						
							| 59 | 58 | albidv |  |-  ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( A. z ( <. v , z >. e. S -> z = w ) <-> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) | 
						
							| 60 | 56 59 | spcev |  |-  ( A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) -> E. w A. z ( <. v , z >. e. S -> z = w ) ) | 
						
							| 61 | 55 60 | syl |  |-  ( ph -> E. w A. z ( <. v , z >. e. S -> z = w ) ) | 
						
							| 62 | 61 | alrimiv |  |-  ( ph -> A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) | 
						
							| 63 |  | dffun5 |  |-  ( Fun S <-> ( Rel S /\ A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) ) | 
						
							| 64 | 30 62 63 | sylanbrc |  |-  ( ph -> Fun S ) | 
						
							| 65 |  | dmss |  |-  ( S C_ ( Z X. _V ) -> dom S C_ dom ( Z X. _V ) ) | 
						
							| 66 | 27 65 | syl |  |-  ( ph -> dom S C_ dom ( Z X. _V ) ) | 
						
							| 67 |  | dmxpss |  |-  dom ( Z X. _V ) C_ Z | 
						
							| 68 | 66 67 | sstrdi |  |-  ( ph -> dom S C_ Z ) | 
						
							| 69 | 1 2 3 4 5 | noseqrdglem |  |-  ( ( ph /\ v e. Z ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. ran R ) | 
						
							| 70 | 6 | adantr |  |-  ( ( ph /\ v e. Z ) -> S = ran R ) | 
						
							| 71 | 69 70 | eleqtrrd |  |-  ( ( ph /\ v e. Z ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S ) | 
						
							| 72 | 48 56 | opeldm |  |-  ( <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S -> v e. dom S ) | 
						
							| 73 | 71 72 | syl |  |-  ( ( ph /\ v e. Z ) -> v e. dom S ) | 
						
							| 74 | 68 73 | eqelssd |  |-  ( ph -> dom S = Z ) | 
						
							| 75 |  | df-fn |  |-  ( S Fn Z <-> ( Fun S /\ dom S = Z ) ) | 
						
							| 76 | 64 74 75 | sylanbrc |  |-  ( ph -> S Fn Z ) |