Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
4 |
|
noseqrdg.1 |
|- ( ph -> A e. V ) |
5 |
|
noseqrdg.2 |
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) |
6 |
|
noseqrdg.3 |
|- ( ph -> S = ran R ) |
7 |
6
|
eleq2d |
|- ( ph -> ( z e. S <-> z e. ran R ) ) |
8 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
9 |
5
|
fneq1d |
|- ( ph -> ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) ) |
10 |
8 9
|
mpbiri |
|- ( ph -> R Fn _om ) |
11 |
|
fvelrnb |
|- ( R Fn _om -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) |
12 |
10 11
|
syl |
|- ( ph -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) |
13 |
7 12
|
bitrd |
|- ( ph -> ( z e. S <-> E. w e. _om ( R ` w ) = z ) ) |
14 |
1 2 3 4 5
|
om2noseqrdg |
|- ( ( ph /\ w e. _om ) -> ( R ` w ) = <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. ) |
15 |
1 2 3
|
om2noseqfo |
|- ( ph -> G : _om -onto-> Z ) |
16 |
|
fof |
|- ( G : _om -onto-> Z -> G : _om --> Z ) |
17 |
15 16
|
syl |
|- ( ph -> G : _om --> Z ) |
18 |
17
|
ffvelcdmda |
|- ( ( ph /\ w e. _om ) -> ( G ` w ) e. Z ) |
19 |
|
fvex |
|- ( 2nd ` ( R ` w ) ) e. _V |
20 |
|
opelxpi |
|- ( ( ( G ` w ) e. Z /\ ( 2nd ` ( R ` w ) ) e. _V ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( Z X. _V ) ) |
21 |
18 19 20
|
sylancl |
|- ( ( ph /\ w e. _om ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( Z X. _V ) ) |
22 |
14 21
|
eqeltrd |
|- ( ( ph /\ w e. _om ) -> ( R ` w ) e. ( Z X. _V ) ) |
23 |
|
eleq1 |
|- ( ( R ` w ) = z -> ( ( R ` w ) e. ( Z X. _V ) <-> z e. ( Z X. _V ) ) ) |
24 |
22 23
|
syl5ibcom |
|- ( ( ph /\ w e. _om ) -> ( ( R ` w ) = z -> z e. ( Z X. _V ) ) ) |
25 |
24
|
rexlimdva |
|- ( ph -> ( E. w e. _om ( R ` w ) = z -> z e. ( Z X. _V ) ) ) |
26 |
13 25
|
sylbid |
|- ( ph -> ( z e. S -> z e. ( Z X. _V ) ) ) |
27 |
26
|
ssrdv |
|- ( ph -> S C_ ( Z X. _V ) ) |
28 |
|
relxp |
|- Rel ( Z X. _V ) |
29 |
|
relss |
|- ( S C_ ( Z X. _V ) -> ( Rel ( Z X. _V ) -> Rel S ) ) |
30 |
27 28 29
|
mpisyl |
|- ( ph -> Rel S ) |
31 |
6
|
eleq2d |
|- ( ph -> ( <. v , z >. e. S <-> <. v , z >. e. ran R ) ) |
32 |
|
fvelrnb |
|- ( R Fn _om -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) |
33 |
10 32
|
syl |
|- ( ph -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) |
34 |
31 33
|
bitrd |
|- ( ph -> ( <. v , z >. e. S <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) |
35 |
14
|
eqeq1d |
|- ( ( ph /\ w e. _om ) -> ( ( R ` w ) = <. v , z >. <-> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) |
36 |
35
|
biimpd |
|- ( ( ph /\ w e. _om ) -> ( ( R ` w ) = <. v , z >. -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) |
37 |
36
|
impr |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) |
38 |
|
fvex |
|- ( G ` w ) e. _V |
39 |
38 19
|
opth1 |
|- ( <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. -> ( G ` w ) = v ) |
40 |
37 39
|
syl |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( G ` w ) = v ) |
41 |
1 2 3
|
om2noseqf1o |
|- ( ph -> G : _om -1-1-onto-> Z ) |
42 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> Z /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
43 |
41 42
|
sylan |
|- ( ( ph /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
44 |
43
|
adantrr |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
45 |
40 44
|
mpd |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( `' G ` v ) = w ) |
46 |
45
|
fveq2d |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( R ` ( `' G ` v ) ) = ( R ` w ) ) |
47 |
46
|
fveq2d |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) |
48 |
|
vex |
|- v e. _V |
49 |
|
vex |
|- z e. _V |
50 |
48 49
|
op2ndd |
|- ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` w ) ) = z ) |
51 |
50
|
ad2antll |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> ( 2nd ` ( R ` w ) ) = z ) |
52 |
47 51
|
eqtr2d |
|- ( ( ph /\ ( w e. _om /\ ( R ` w ) = <. v , z >. ) ) -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
53 |
52
|
rexlimdvaa |
|- ( ph -> ( E. w e. _om ( R ` w ) = <. v , z >. -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
54 |
34 53
|
sylbid |
|- ( ph -> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
55 |
54
|
alrimiv |
|- ( ph -> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
56 |
|
fvex |
|- ( 2nd ` ( R ` ( `' G ` v ) ) ) e. _V |
57 |
|
eqeq2 |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( z = w <-> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
58 |
57
|
imbi2d |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( ( <. v , z >. e. S -> z = w ) <-> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
59 |
58
|
albidv |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( A. z ( <. v , z >. e. S -> z = w ) <-> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
60 |
56 59
|
spcev |
|- ( A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) -> E. w A. z ( <. v , z >. e. S -> z = w ) ) |
61 |
55 60
|
syl |
|- ( ph -> E. w A. z ( <. v , z >. e. S -> z = w ) ) |
62 |
61
|
alrimiv |
|- ( ph -> A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) |
63 |
|
dffun5 |
|- ( Fun S <-> ( Rel S /\ A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) ) |
64 |
30 62 63
|
sylanbrc |
|- ( ph -> Fun S ) |
65 |
|
dmss |
|- ( S C_ ( Z X. _V ) -> dom S C_ dom ( Z X. _V ) ) |
66 |
27 65
|
syl |
|- ( ph -> dom S C_ dom ( Z X. _V ) ) |
67 |
|
dmxpss |
|- dom ( Z X. _V ) C_ Z |
68 |
66 67
|
sstrdi |
|- ( ph -> dom S C_ Z ) |
69 |
1 2 3 4 5
|
noseqrdglem |
|- ( ( ph /\ v e. Z ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. ran R ) |
70 |
6
|
adantr |
|- ( ( ph /\ v e. Z ) -> S = ran R ) |
71 |
69 70
|
eleqtrrd |
|- ( ( ph /\ v e. Z ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S ) |
72 |
48 56
|
opeldm |
|- ( <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S -> v e. dom S ) |
73 |
71 72
|
syl |
|- ( ( ph /\ v e. Z ) -> v e. dom S ) |
74 |
68 73
|
eqelssd |
|- ( ph -> dom S = Z ) |
75 |
|
df-fn |
|- ( S Fn Z <-> ( Fun S /\ dom S = Z ) ) |
76 |
64 74 75
|
sylanbrc |
|- ( ph -> S Fn Z ) |