Metamath Proof Explorer


Theorem dffun5

Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dffun5 FunARelAxzyxyAy=z

Proof

Step Hyp Ref Expression
1 dffun3 FunARelAxzyxAyy=z
2 df-br xAyxyA
3 2 imbi1i xAyy=zxyAy=z
4 3 albii yxAyy=zyxyAy=z
5 4 exbii zyxAyy=zzyxyAy=z
6 5 albii xzyxAyy=zxzyxyAy=z
7 6 anbi2i RelAxzyxAyy=zRelAxzyxyAy=z
8 1 7 bitri FunARelAxzyxyAy=z