Metamath Proof Explorer


Theorem noseqp1

Description: One plus an element of Z is an element of Z . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
noseqp1.3 φ B Z
Assertion noseqp1 φ B + s 1 s Z

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 noseqp1.3 φ B Z
4 3 1 eleqtrd φ B rec x V x + s 1 s A ω
5 df-ima rec x V x + s 1 s A ω = ran rec x V x + s 1 s A ω
6 4 5 eleqtrdi φ B ran rec x V x + s 1 s A ω
7 frfnom rec x V x + s 1 s A ω Fn ω
8 fvelrnb rec x V x + s 1 s A ω Fn ω B ran rec x V x + s 1 s A ω y ω rec x V x + s 1 s A ω y = B
9 7 8 ax-mp B ran rec x V x + s 1 s A ω y ω rec x V x + s 1 s A ω y = B
10 6 9 sylib φ y ω rec x V x + s 1 s A ω y = B
11 ovex rec x V x + s 1 s A ω y + s 1 s V
12 eqid rec x V x + s 1 s A ω = rec x V x + s 1 s A ω
13 oveq1 z = x z + s 1 s = x + s 1 s
14 oveq1 z = rec x V x + s 1 s A ω y z + s 1 s = rec x V x + s 1 s A ω y + s 1 s
15 12 13 14 frsucmpt2 y ω rec x V x + s 1 s A ω y + s 1 s V rec x V x + s 1 s A ω suc y = rec x V x + s 1 s A ω y + s 1 s
16 11 15 mpan2 y ω rec x V x + s 1 s A ω suc y = rec x V x + s 1 s A ω y + s 1 s
17 16 adantl φ y ω rec x V x + s 1 s A ω suc y = rec x V x + s 1 s A ω y + s 1 s
18 peano2 y ω suc y ω
19 fnfvelrn rec x V x + s 1 s A ω Fn ω suc y ω rec x V x + s 1 s A ω suc y ran rec x V x + s 1 s A ω
20 7 18 19 sylancr y ω rec x V x + s 1 s A ω suc y ran rec x V x + s 1 s A ω
21 20 adantl φ y ω rec x V x + s 1 s A ω suc y ran rec x V x + s 1 s A ω
22 1 5 eqtrdi φ Z = ran rec x V x + s 1 s A ω
23 22 adantr φ y ω Z = ran rec x V x + s 1 s A ω
24 21 23 eleqtrrd φ y ω rec x V x + s 1 s A ω suc y Z
25 17 24 eqeltrrd φ y ω rec x V x + s 1 s A ω y + s 1 s Z
26 oveq1 rec x V x + s 1 s A ω y = B rec x V x + s 1 s A ω y + s 1 s = B + s 1 s
27 26 eleq1d rec x V x + s 1 s A ω y = B rec x V x + s 1 s A ω y + s 1 s Z B + s 1 s Z
28 25 27 syl5ibcom φ y ω rec x V x + s 1 s A ω y = B B + s 1 s Z
29 28 impr φ y ω rec x V x + s 1 s A ω y = B B + s 1 s Z
30 10 29 rexlimddv φ B + s 1 s Z