Metamath Proof Explorer


Theorem noseqind

Description: Peano's inductive postulate for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
noseqind.3 φ A B
noseqind.4 φ y B y + s 1 s B
Assertion noseqind φ Z B

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 noseqind.3 φ A B
4 noseqind.4 φ y B y + s 1 s B
5 df-ima rec x V x + s 1 s A ω = ran rec x V x + s 1 s A ω
6 1 5 eqtrdi φ Z = ran rec x V x + s 1 s A ω
7 fveq2 z = rec x V x + s 1 s A ω z = rec x V x + s 1 s A ω
8 7 eleq1d z = rec x V x + s 1 s A ω z B rec x V x + s 1 s A ω B
9 fveq2 z = w rec x V x + s 1 s A ω z = rec x V x + s 1 s A ω w
10 9 eleq1d z = w rec x V x + s 1 s A ω z B rec x V x + s 1 s A ω w B
11 fveq2 z = suc w rec x V x + s 1 s A ω z = rec x V x + s 1 s A ω suc w
12 11 eleq1d z = suc w rec x V x + s 1 s A ω z B rec x V x + s 1 s A ω suc w B
13 fr0g A No rec x V x + s 1 s A ω = A
14 2 13 syl φ rec x V x + s 1 s A ω = A
15 14 3 eqeltrd φ rec x V x + s 1 s A ω B
16 oveq1 y = rec x V x + s 1 s A ω w y + s 1 s = rec x V x + s 1 s A ω w + s 1 s
17 16 eleq1d y = rec x V x + s 1 s A ω w y + s 1 s B rec x V x + s 1 s A ω w + s 1 s B
18 17 imbi2d y = rec x V x + s 1 s A ω w φ y + s 1 s B φ rec x V x + s 1 s A ω w + s 1 s B
19 4 expcom y B φ y + s 1 s B
20 18 19 vtoclga rec x V x + s 1 s A ω w B φ rec x V x + s 1 s A ω w + s 1 s B
21 20 impcom φ rec x V x + s 1 s A ω w B rec x V x + s 1 s A ω w + s 1 s B
22 ovex rec x V x + s 1 s A ω w + s 1 s V
23 eqid rec x V x + s 1 s A ω = rec x V x + s 1 s A ω
24 oveq1 t = x t + s 1 s = x + s 1 s
25 oveq1 t = rec x V x + s 1 s A ω w t + s 1 s = rec x V x + s 1 s A ω w + s 1 s
26 23 24 25 frsucmpt2 w ω rec x V x + s 1 s A ω w + s 1 s V rec x V x + s 1 s A ω suc w = rec x V x + s 1 s A ω w + s 1 s
27 22 26 mpan2 w ω rec x V x + s 1 s A ω suc w = rec x V x + s 1 s A ω w + s 1 s
28 27 eleq1d w ω rec x V x + s 1 s A ω suc w B rec x V x + s 1 s A ω w + s 1 s B
29 21 28 imbitrrid w ω φ rec x V x + s 1 s A ω w B rec x V x + s 1 s A ω suc w B
30 29 expd w ω φ rec x V x + s 1 s A ω w B rec x V x + s 1 s A ω suc w B
31 8 10 12 15 30 finds2 z ω φ rec x V x + s 1 s A ω z B
32 31 com12 φ z ω rec x V x + s 1 s A ω z B
33 32 ralrimiv φ z ω rec x V x + s 1 s A ω z B
34 frfnom rec x V x + s 1 s A ω Fn ω
35 ffnfv rec x V x + s 1 s A ω : ω B rec x V x + s 1 s A ω Fn ω z ω rec x V x + s 1 s A ω z B
36 34 35 mpbiran rec x V x + s 1 s A ω : ω B z ω rec x V x + s 1 s A ω z B
37 33 36 sylibr φ rec x V x + s 1 s A ω : ω B
38 37 frnd φ ran rec x V x + s 1 s A ω B
39 6 38 eqsstrd φ Z B