| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | 
						
							| 2 |  | noseq.2 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | noseqind.3 |  |-  ( ph -> A e. B ) | 
						
							| 4 |  | noseqind.4 |  |-  ( ( ph /\ y e. B ) -> ( y +s 1s ) e. B ) | 
						
							| 5 |  | df-ima |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) | 
						
							| 6 | 1 5 | eqtrdi |  |-  ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 7 |  | fveq2 |  |-  ( z = (/) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( z = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. B ) ) | 
						
							| 9 |  | fveq2 |  |-  ( z = w -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) ) | 
						
							| 10 | 9 | eleq1d |  |-  ( z = w -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) ) | 
						
							| 11 |  | fveq2 |  |-  ( z = suc w -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( z = suc w -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) | 
						
							| 13 |  | fr0g |  |-  ( A e. No -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) | 
						
							| 15 | 14 3 | eqeltrd |  |-  ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. B ) | 
						
							| 16 |  | oveq1 |  |-  ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) | 
						
							| 17 | 16 | eleq1d |  |-  ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( ( y +s 1s ) e. B <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( ( ph -> ( y +s 1s ) e. B ) <-> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) ) | 
						
							| 19 | 4 | expcom |  |-  ( y e. B -> ( ph -> ( y +s 1s ) e. B ) ) | 
						
							| 20 | 18 19 | vtoclga |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B -> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( ph /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) | 
						
							| 22 |  | ovex |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. _V | 
						
							| 23 |  | eqid |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) | 
						
							| 24 |  | oveq1 |  |-  ( t = x -> ( t +s 1s ) = ( x +s 1s ) ) | 
						
							| 25 |  | oveq1 |  |-  ( t = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( t +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) | 
						
							| 26 | 23 24 25 | frsucmpt2 |  |-  ( ( w e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) | 
						
							| 27 | 22 26 | mpan2 |  |-  ( w e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) | 
						
							| 28 | 27 | eleq1d |  |-  ( w e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) | 
						
							| 29 | 21 28 | imbitrrid |  |-  ( w e. _om -> ( ( ph /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) | 
						
							| 30 | 29 | expd |  |-  ( w e. _om -> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) ) | 
						
							| 31 | 8 10 12 15 30 | finds2 |  |-  ( z e. _om -> ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) | 
						
							| 32 | 31 | com12 |  |-  ( ph -> ( z e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) | 
						
							| 33 | 32 | ralrimiv |  |-  ( ph -> A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) | 
						
							| 34 |  | frfnom |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om | 
						
							| 35 |  | ffnfv |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) | 
						
							| 36 | 34 35 | mpbiran |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B <-> A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) | 
						
							| 37 | 33 36 | sylibr |  |-  ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B ) | 
						
							| 38 | 37 | frnd |  |-  ( ph -> ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) C_ B ) | 
						
							| 39 | 6 38 | eqsstrd |  |-  ( ph -> Z C_ B ) |