| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noseq.1 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
| 2 |
|
noseq.2 |
|- ( ph -> A e. No ) |
| 3 |
|
noseqind.3 |
|- ( ph -> A e. B ) |
| 4 |
|
noseqind.4 |
|- ( ( ph /\ y e. B ) -> ( y +s 1s ) e. B ) |
| 5 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
| 6 |
1 5
|
eqtrdi |
|- ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 7 |
|
fveq2 |
|- ( z = (/) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) ) |
| 8 |
7
|
eleq1d |
|- ( z = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. B ) ) |
| 9 |
|
fveq2 |
|- ( z = w -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) ) |
| 10 |
9
|
eleq1d |
|- ( z = w -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) ) |
| 11 |
|
fveq2 |
|- ( z = suc w -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) ) |
| 12 |
11
|
eleq1d |
|- ( z = suc w -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) |
| 13 |
|
fr0g |
|- ( A e. No -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) |
| 15 |
14 3
|
eqeltrd |
|- ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. B ) |
| 16 |
|
oveq1 |
|- ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) |
| 17 |
16
|
eleq1d |
|- ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( ( y +s 1s ) e. B <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) |
| 18 |
17
|
imbi2d |
|- ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( ( ph -> ( y +s 1s ) e. B ) <-> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) ) |
| 19 |
4
|
expcom |
|- ( y e. B -> ( ph -> ( y +s 1s ) e. B ) ) |
| 20 |
18 19
|
vtoclga |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B -> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) |
| 21 |
20
|
impcom |
|- ( ( ph /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) |
| 22 |
|
ovex |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. _V |
| 23 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
| 24 |
|
oveq1 |
|- ( t = x -> ( t +s 1s ) = ( x +s 1s ) ) |
| 25 |
|
oveq1 |
|- ( t = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) -> ( t +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) |
| 26 |
23 24 25
|
frsucmpt2 |
|- ( ( w e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) |
| 27 |
22 26
|
mpan2 |
|- ( w e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) ) |
| 28 |
27
|
eleq1d |
|- ( w e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) +s 1s ) e. B ) ) |
| 29 |
21 28
|
imbitrrid |
|- ( w e. _om -> ( ( ph /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) |
| 30 |
29
|
expd |
|- ( w e. _om -> ( ph -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` w ) e. B -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc w ) e. B ) ) ) |
| 31 |
8 10 12 15 30
|
finds2 |
|- ( z e. _om -> ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) |
| 32 |
31
|
com12 |
|- ( ph -> ( z e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) |
| 33 |
32
|
ralrimiv |
|- ( ph -> A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) |
| 34 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om |
| 35 |
|
ffnfv |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) ) |
| 36 |
34 35
|
mpbiran |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B <-> A. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` z ) e. B ) |
| 37 |
33 36
|
sylibr |
|- ( ph -> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) : _om --> B ) |
| 38 |
37
|
frnd |
|- ( ph -> ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) C_ B ) |
| 39 |
6 38
|
eqsstrd |
|- ( ph -> Z C_ B ) |