| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noseq.1 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
| 2 |
|
noseq.2 |
|- ( ph -> A e. No ) |
| 3 |
|
noseqinds.3 |
|- ( y = A -> ( ps <-> ch ) ) |
| 4 |
|
noseqinds.4 |
|- ( y = z -> ( ps <-> th ) ) |
| 5 |
|
noseqinds.5 |
|- ( y = ( z +s 1s ) -> ( ps <-> ta ) ) |
| 6 |
|
noseqinds.6 |
|- ( y = B -> ( ps <-> et ) ) |
| 7 |
|
noseqinds.7 |
|- ( ph -> ch ) |
| 8 |
|
noseqinds.8 |
|- ( ( ph /\ z e. Z ) -> ( th -> ta ) ) |
| 9 |
1 2
|
noseq0 |
|- ( ph -> A e. Z ) |
| 10 |
3 9 7
|
elrabd |
|- ( ph -> A e. { y e. Z | ps } ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ z e. Z ) -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ z e. Z ) -> A e. No ) |
| 13 |
|
simpr |
|- ( ( ph /\ z e. Z ) -> z e. Z ) |
| 14 |
11 12 13
|
noseqp1 |
|- ( ( ph /\ z e. Z ) -> ( z +s 1s ) e. Z ) |
| 15 |
8 14
|
jctild |
|- ( ( ph /\ z e. Z ) -> ( th -> ( ( z +s 1s ) e. Z /\ ta ) ) ) |
| 16 |
15
|
expimpd |
|- ( ph -> ( ( z e. Z /\ th ) -> ( ( z +s 1s ) e. Z /\ ta ) ) ) |
| 17 |
4
|
elrab |
|- ( z e. { y e. Z | ps } <-> ( z e. Z /\ th ) ) |
| 18 |
5
|
elrab |
|- ( ( z +s 1s ) e. { y e. Z | ps } <-> ( ( z +s 1s ) e. Z /\ ta ) ) |
| 19 |
16 17 18
|
3imtr4g |
|- ( ph -> ( z e. { y e. Z | ps } -> ( z +s 1s ) e. { y e. Z | ps } ) ) |
| 20 |
19
|
imp |
|- ( ( ph /\ z e. { y e. Z | ps } ) -> ( z +s 1s ) e. { y e. Z | ps } ) |
| 21 |
1 2 10 20
|
noseqind |
|- ( ph -> Z C_ { y e. Z | ps } ) |
| 22 |
21
|
sselda |
|- ( ( ph /\ B e. Z ) -> B e. { y e. Z | ps } ) |
| 23 |
6
|
elrab |
|- ( B e. { y e. Z | ps } <-> ( B e. Z /\ et ) ) |
| 24 |
22 23
|
sylib |
|- ( ( ph /\ B e. Z ) -> ( B e. Z /\ et ) ) |
| 25 |
24
|
simprd |
|- ( ( ph /\ B e. Z ) -> et ) |