| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | 
						
							| 2 |  | noseq.2 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | noseqinds.3 |  |-  ( y = A -> ( ps <-> ch ) ) | 
						
							| 4 |  | noseqinds.4 |  |-  ( y = z -> ( ps <-> th ) ) | 
						
							| 5 |  | noseqinds.5 |  |-  ( y = ( z +s 1s ) -> ( ps <-> ta ) ) | 
						
							| 6 |  | noseqinds.6 |  |-  ( y = B -> ( ps <-> et ) ) | 
						
							| 7 |  | noseqinds.7 |  |-  ( ph -> ch ) | 
						
							| 8 |  | noseqinds.8 |  |-  ( ( ph /\ z e. Z ) -> ( th -> ta ) ) | 
						
							| 9 | 1 2 | noseq0 |  |-  ( ph -> A e. Z ) | 
						
							| 10 | 3 9 7 | elrabd |  |-  ( ph -> A e. { y e. Z | ps } ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ z e. Z ) -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ z e. Z ) -> A e. No ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ z e. Z ) -> z e. Z ) | 
						
							| 14 | 11 12 13 | noseqp1 |  |-  ( ( ph /\ z e. Z ) -> ( z +s 1s ) e. Z ) | 
						
							| 15 | 8 14 | jctild |  |-  ( ( ph /\ z e. Z ) -> ( th -> ( ( z +s 1s ) e. Z /\ ta ) ) ) | 
						
							| 16 | 15 | expimpd |  |-  ( ph -> ( ( z e. Z /\ th ) -> ( ( z +s 1s ) e. Z /\ ta ) ) ) | 
						
							| 17 | 4 | elrab |  |-  ( z e. { y e. Z | ps } <-> ( z e. Z /\ th ) ) | 
						
							| 18 | 5 | elrab |  |-  ( ( z +s 1s ) e. { y e. Z | ps } <-> ( ( z +s 1s ) e. Z /\ ta ) ) | 
						
							| 19 | 16 17 18 | 3imtr4g |  |-  ( ph -> ( z e. { y e. Z | ps } -> ( z +s 1s ) e. { y e. Z | ps } ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ph /\ z e. { y e. Z | ps } ) -> ( z +s 1s ) e. { y e. Z | ps } ) | 
						
							| 21 | 1 2 10 20 | noseqind |  |-  ( ph -> Z C_ { y e. Z | ps } ) | 
						
							| 22 | 21 | sselda |  |-  ( ( ph /\ B e. Z ) -> B e. { y e. Z | ps } ) | 
						
							| 23 | 6 | elrab |  |-  ( B e. { y e. Z | ps } <-> ( B e. Z /\ et ) ) | 
						
							| 24 | 22 23 | sylib |  |-  ( ( ph /\ B e. Z ) -> ( B e. Z /\ et ) ) | 
						
							| 25 | 24 | simprd |  |-  ( ( ph /\ B e. Z ) -> et ) |