Metamath Proof Explorer


Theorem noseqinds

Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
noseqinds.3 y = A ψ χ
noseqinds.4 y = z ψ θ
noseqinds.5 y = z + s 1 s ψ τ
noseqinds.6 y = B ψ η
noseqinds.7 φ χ
noseqinds.8 φ z Z θ τ
Assertion noseqinds φ B Z η

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 noseqinds.3 y = A ψ χ
4 noseqinds.4 y = z ψ θ
5 noseqinds.5 y = z + s 1 s ψ τ
6 noseqinds.6 y = B ψ η
7 noseqinds.7 φ χ
8 noseqinds.8 φ z Z θ τ
9 1 2 noseq0 φ A Z
10 3 9 7 elrabd φ A y Z | ψ
11 1 adantr φ z Z Z = rec x V x + s 1 s A ω
12 2 adantr φ z Z A No
13 simpr φ z Z z Z
14 11 12 13 noseqp1 φ z Z z + s 1 s Z
15 8 14 jctild φ z Z θ z + s 1 s Z τ
16 15 expimpd φ z Z θ z + s 1 s Z τ
17 4 elrab z y Z | ψ z Z θ
18 5 elrab z + s 1 s y Z | ψ z + s 1 s Z τ
19 16 17 18 3imtr4g φ z y Z | ψ z + s 1 s y Z | ψ
20 19 imp φ z y Z | ψ z + s 1 s y Z | ψ
21 1 2 10 20 noseqind φ Z y Z | ψ
22 21 sselda φ B Z B y Z | ψ
23 6 elrab B y Z | ψ B Z η
24 22 23 sylib φ B Z B Z η
25 24 simprd φ B Z η