Metamath Proof Explorer


Theorem noseq0

Description: The surreal A is a member of the sequence starting at A . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
Assertion noseq0 φ A Z

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 fr0g A No rec x V x + s 1 s A ω = A
4 2 3 syl φ rec x V x + s 1 s A ω = A
5 frfnom rec x V x + s 1 s A ω Fn ω
6 peano1 ω
7 fnfvelrn rec x V x + s 1 s A ω Fn ω ω rec x V x + s 1 s A ω ran rec x V x + s 1 s A ω
8 5 6 7 mp2an rec x V x + s 1 s A ω ran rec x V x + s 1 s A ω
9 4 8 eqeltrrdi φ A ran rec x V x + s 1 s A ω
10 df-ima rec x V x + s 1 s A ω = ran rec x V x + s 1 s A ω
11 1 10 eqtrdi φ Z = ran rec x V x + s 1 s A ω
12 9 11 eleqtrrd φ A Z