Metamath Proof Explorer


Theorem noseq0

Description: The surreal A is a member of the sequence starting at A . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
noseq.2 ( 𝜑𝐴 No )
Assertion noseq0 ( 𝜑𝐴𝑍 )

Proof

Step Hyp Ref Expression
1 noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
2 noseq.2 ( 𝜑𝐴 No )
3 fr0g ( 𝐴 No → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 )
4 2 3 syl ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 )
5 frfnom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω
6 peano1 ∅ ∈ ω
7 fnfvelrn ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) )
8 5 6 7 mp2an ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω )
9 4 8 eqeltrrdi ( 𝜑𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) )
10 df-ima ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω )
11 1 10 eqtrdi ( 𝜑𝑍 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) )
12 9 11 eleqtrrd ( 𝜑𝐴𝑍 )