| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 2 |  | noseq.2 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | fr0g | ⊢ ( 𝐴  ∈   No   →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  =  𝐴 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  =  𝐴 ) | 
						
							| 5 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω | 
						
							| 6 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 7 |  | fnfvelrn | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω  ∧  ∅  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 9 | 4 8 | eqeltrrdi | ⊢ ( 𝜑  →  𝐴  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 10 |  | df-ima | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω )  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 11 | 1 10 | eqtrdi | ⊢ ( 𝜑  →  𝑍  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 12 | 9 11 | eleqtrrd | ⊢ ( 𝜑  →  𝐴  ∈  𝑍 ) |