| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noseq.1 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
| 2 |
|
noseq.2 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
fr0g |
⊢ ( 𝐴 ∈ No → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
| 5 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω |
| 6 |
|
peano1 |
⊢ ∅ ∈ ω |
| 7 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
| 9 |
4 8
|
eqeltrrdi |
⊢ ( 𝜑 → 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
| 10 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
| 11 |
1 10
|
eqtrdi |
⊢ ( 𝜑 → 𝑍 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
| 12 |
9 11
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |