Step |
Hyp |
Ref |
Expression |
1 |
|
noseq.1 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
2 |
|
noseq.2 |
|- ( ph -> A e. No ) |
3 |
|
fr0g |
|- ( A e. No -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) |
4 |
2 3
|
syl |
|- ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A ) |
5 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om |
6 |
|
peano1 |
|- (/) e. _om |
7 |
|
fnfvelrn |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ (/) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
8 |
5 6 7
|
mp2an |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
9 |
4 8
|
eqeltrrdi |
|- ( ph -> A e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
10 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
11 |
1 10
|
eqtrdi |
|- ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
12 |
9 11
|
eleqtrrd |
|- ( ph -> A e. Z ) |