Metamath Proof Explorer


Theorem noseq0

Description: The surreal A is a member of the sequence starting at A . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
noseq.2
|- ( ph -> A e. No )
Assertion noseq0
|- ( ph -> A e. Z )

Proof

Step Hyp Ref Expression
1 noseq.1
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
2 noseq.2
 |-  ( ph -> A e. No )
3 fr0g
 |-  ( A e. No -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A )
4 2 3 syl
 |-  ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) = A )
5 frfnom
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om
6 peano1
 |-  (/) e. _om
7 fnfvelrn
 |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ (/) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
8 5 6 7 mp2an
 |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om )
9 4 8 eqeltrrdi
 |-  ( ph -> A e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
10 df-ima
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om )
11 1 10 eqtrdi
 |-  ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
12 9 11 eleqtrrd
 |-  ( ph -> A e. Z )