Metamath Proof Explorer


Theorem noseqp1

Description: One plus an element of Z is an element of Z . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
noseq.2
|- ( ph -> A e. No )
noseqp1.3
|- ( ph -> B e. Z )
Assertion noseqp1
|- ( ph -> ( B +s 1s ) e. Z )

Proof

Step Hyp Ref Expression
1 noseq.1
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
2 noseq.2
 |-  ( ph -> A e. No )
3 noseqp1.3
 |-  ( ph -> B e. Z )
4 3 1 eleqtrd
 |-  ( ph -> B e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
5 df-ima
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om )
6 4 5 eleqtrdi
 |-  ( ph -> B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
7 frfnom
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om
8 fvelrnb
 |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om -> ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) )
9 7 8 ax-mp
 |-  ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B )
10 6 9 sylib
 |-  ( ph -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B )
11 ovex
 |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V
12 eqid
 |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om )
13 oveq1
 |-  ( z = x -> ( z +s 1s ) = ( x +s 1s ) )
14 oveq1
 |-  ( z = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) -> ( z +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) )
15 12 13 14 frsucmpt2
 |-  ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) )
16 11 15 mpan2
 |-  ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) )
17 16 adantl
 |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) )
18 peano2
 |-  ( y e. _om -> suc y e. _om )
19 fnfvelrn
 |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ suc y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
20 7 18 19 sylancr
 |-  ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
21 20 adantl
 |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
22 1 5 eqtrdi
 |-  ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
23 22 adantr
 |-  ( ( ph /\ y e. _om ) -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) )
24 21 23 eleqtrrd
 |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. Z )
25 17 24 eqeltrrd
 |-  ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z )
26 oveq1
 |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) = ( B +s 1s ) )
27 26 eleq1d
 |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z <-> ( B +s 1s ) e. Z ) )
28 25 27 syl5ibcom
 |-  ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( B +s 1s ) e. Z ) )
29 28 impr
 |-  ( ( ph /\ ( y e. _om /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) ) -> ( B +s 1s ) e. Z )
30 10 29 rexlimddv
 |-  ( ph -> ( B +s 1s ) e. Z )