| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noseq.1 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
| 2 |
|
noseq.2 |
|- ( ph -> A e. No ) |
| 3 |
|
noseqp1.3 |
|- ( ph -> B e. Z ) |
| 4 |
3 1
|
eleqtrd |
|- ( ph -> B e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) |
| 5 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
| 6 |
4 5
|
eleqtrdi |
|- ( ph -> B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 7 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om |
| 8 |
|
fvelrnb |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om -> ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) ) |
| 9 |
7 8
|
ax-mp |
|- ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) |
| 10 |
6 9
|
sylib |
|- ( ph -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) |
| 11 |
|
ovex |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V |
| 12 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) |
| 13 |
|
oveq1 |
|- ( z = x -> ( z +s 1s ) = ( x +s 1s ) ) |
| 14 |
|
oveq1 |
|- ( z = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) -> ( z +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) |
| 15 |
12 13 14
|
frsucmpt2 |
|- ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) |
| 16 |
11 15
|
mpan2 |
|- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) |
| 18 |
|
peano2 |
|- ( y e. _om -> suc y e. _om ) |
| 19 |
|
fnfvelrn |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ suc y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 20 |
7 18 19
|
sylancr |
|- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 22 |
1 5
|
eqtrdi |
|- ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ y e. _om ) -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) |
| 24 |
21 23
|
eleqtrrd |
|- ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. Z ) |
| 25 |
17 24
|
eqeltrrd |
|- ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z ) |
| 26 |
|
oveq1 |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) = ( B +s 1s ) ) |
| 27 |
26
|
eleq1d |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z <-> ( B +s 1s ) e. Z ) ) |
| 28 |
25 27
|
syl5ibcom |
|- ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( B +s 1s ) e. Z ) ) |
| 29 |
28
|
impr |
|- ( ( ph /\ ( y e. _om /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) ) -> ( B +s 1s ) e. Z ) |
| 30 |
10 29
|
rexlimddv |
|- ( ph -> ( B +s 1s ) e. Z ) |