| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | 
						
							| 2 |  | noseq.2 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | noseqp1.3 |  |-  ( ph -> B e. Z ) | 
						
							| 4 | 3 1 | eleqtrd |  |-  ( ph -> B e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | 
						
							| 5 |  | df-ima |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) | 
						
							| 6 | 4 5 | eleqtrdi |  |-  ( ph -> B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 7 |  | frfnom |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om | 
						
							| 8 |  | fvelrnb |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om -> ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( B e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) | 
						
							| 10 | 6 9 | sylib |  |-  ( ph -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) | 
						
							| 11 |  | ovex |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V | 
						
							| 12 |  | eqid |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) | 
						
							| 13 |  | oveq1 |  |-  ( z = x -> ( z +s 1s ) = ( x +s 1s ) ) | 
						
							| 14 |  | oveq1 |  |-  ( z = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) -> ( z +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 15 | 12 13 14 | frsucmpt2 |  |-  ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 16 | 11 15 | mpan2 |  |-  ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 18 |  | peano2 |  |-  ( y e. _om -> suc y e. _om ) | 
						
							| 19 |  | fnfvelrn |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) Fn _om /\ suc y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 20 | 7 18 19 | sylancr |  |-  ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 22 | 1 5 | eqtrdi |  |-  ( ph -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ y e. _om ) -> Z = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ) | 
						
							| 24 | 21 23 | eleqtrrd |  |-  ( ( ph /\ y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` suc y ) e. Z ) | 
						
							| 25 | 17 24 | eqeltrrd |  |-  ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z ) | 
						
							| 26 |  | oveq1 |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) = ( B +s 1s ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) +s 1s ) e. Z <-> ( B +s 1s ) e. Z ) ) | 
						
							| 28 | 25 27 | syl5ibcom |  |-  ( ( ph /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B -> ( B +s 1s ) e. Z ) ) | 
						
							| 29 | 28 | impr |  |-  ( ( ph /\ ( y e. _om /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) |` _om ) ` y ) = B ) ) -> ( B +s 1s ) e. Z ) | 
						
							| 30 | 10 29 | rexlimddv |  |-  ( ph -> ( B +s 1s ) e. Z ) |