| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 2 |  | noseq.2 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | noseqp1.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑍 ) | 
						
							| 4 | 3 1 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 5 |  | df-ima | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω )  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 6 | 4 5 | eleqtrdi | ⊢ ( 𝜑  →  𝐵  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 7 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω | 
						
							| 8 |  | fvelrnb | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω  →  ( 𝐵  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝐵  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵 ) | 
						
							| 10 | 6 9 | sylib | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵 ) | 
						
							| 11 |  | ovex | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  V | 
						
							| 12 |  | eqid | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  +s   1s  )  =  ( 𝑥  +s   1s  ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑧  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  →  ( 𝑧  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 15 | 12 13 14 | frsucmpt2 | ⊢ ( ( 𝑦  ∈  ω  ∧  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  V )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 16 | 11 15 | mpan2 | ⊢ ( 𝑦  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 18 |  | peano2 | ⊢ ( 𝑦  ∈  ω  →  suc  𝑦  ∈  ω ) | 
						
							| 19 |  | fnfvelrn | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω  ∧  suc  𝑦  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 20 | 7 18 19 | sylancr | ⊢ ( 𝑦  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 22 | 1 5 | eqtrdi | ⊢ ( 𝜑  →  𝑍  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  𝑍  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 24 | 21 23 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑦 )  ∈  𝑍 ) | 
						
							| 25 | 17 24 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  𝑍 ) | 
						
							| 26 |  | oveq1 | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  =  ( 𝐵  +s   1s  ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵  →  ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  𝑍  ↔  ( 𝐵  +s   1s  )  ∈  𝑍 ) ) | 
						
							| 28 | 25 27 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵  →  ( 𝐵  +s   1s  )  ∈  𝑍 ) ) | 
						
							| 29 | 28 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑦 )  =  𝐵 ) )  →  ( 𝐵  +s   1s  )  ∈  𝑍 ) | 
						
							| 30 | 10 29 | rexlimddv | ⊢ ( 𝜑  →  ( 𝐵  +s   1s  )  ∈  𝑍 ) |