Step |
Hyp |
Ref |
Expression |
1 |
|
noseq.1 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
2 |
|
noseq.2 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
noseqp1.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑍 ) |
4 |
3 1
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
5 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
6 |
4 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
7 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω |
8 |
|
fvelrnb |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω → ( 𝐵 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝐵 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 ) |
10 |
6 9
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 ) |
11 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V |
12 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
13 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 +s 1s ) = ( 𝑥 +s 1s ) ) |
14 |
|
oveq1 |
⊢ ( 𝑧 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) → ( 𝑧 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
15 |
12 13 14
|
frsucmpt2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
16 |
11 15
|
mpan2 |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
18 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
19 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω ∧ suc 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
20 |
7 18 19
|
sylancr |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
22 |
1 5
|
eqtrdi |
⊢ ( 𝜑 → 𝑍 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → 𝑍 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
24 |
21 23
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑦 ) ∈ 𝑍 ) |
25 |
17 24
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ 𝑍 ) |
26 |
|
oveq1 |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) = ( 𝐵 +s 1s ) ) |
27 |
26
|
eleq1d |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 → ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ 𝑍 ↔ ( 𝐵 +s 1s ) ∈ 𝑍 ) ) |
28 |
25 27
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 → ( 𝐵 +s 1s ) ∈ 𝑍 ) ) |
29 |
28
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑦 ) = 𝐵 ) ) → ( 𝐵 +s 1s ) ∈ 𝑍 ) |
30 |
10 29
|
rexlimddv |
⊢ ( 𝜑 → ( 𝐵 +s 1s ) ∈ 𝑍 ) |