Step |
Hyp |
Ref |
Expression |
1 |
|
noseq.1 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
2 |
|
noseq.2 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
noseqind.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
4 |
|
noseqind.4 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 +s 1s ) ∈ 𝐵 ) |
5 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
6 |
1 5
|
eqtrdi |
⊢ ( 𝜑 → 𝑍 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ) |
7 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑧 = ∅ → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ 𝐵 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ 𝐵 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑤 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑧 = suc 𝑤 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) ∈ 𝐵 ) ) |
13 |
|
fr0g |
⊢ ( 𝐴 ∈ No → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
15 |
14 3
|
eqeltrd |
⊢ ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) ∈ 𝐵 ) |
16 |
|
oveq1 |
⊢ ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( 𝑦 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( ( 𝑦 +s 1s ) ∈ 𝐵 ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ 𝐵 ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( ( 𝜑 → ( 𝑦 +s 1s ) ∈ 𝐵 ) ↔ ( 𝜑 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ 𝐵 ) ) ) |
19 |
4
|
expcom |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ( 𝑦 +s 1s ) ∈ 𝐵 ) ) |
20 |
18 19
|
vtoclga |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ 𝐵 → ( 𝜑 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ 𝐵 ) ) |
21 |
20
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ 𝐵 ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ 𝐵 ) |
22 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ V |
23 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) |
24 |
|
oveq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 +s 1s ) = ( 𝑥 +s 1s ) ) |
25 |
|
oveq1 |
⊢ ( 𝑡 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( 𝑡 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ) |
26 |
23 24 25
|
frsucmpt2 |
⊢ ( ( 𝑤 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ) |
27 |
22 26
|
mpan2 |
⊢ ( 𝑤 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑤 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) ∈ 𝐵 ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) +s 1s ) ∈ 𝐵 ) ) |
29 |
21 28
|
imbitrrid |
⊢ ( 𝑤 ∈ ω → ( ( 𝜑 ∧ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ 𝐵 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) ∈ 𝐵 ) ) |
30 |
29
|
expd |
⊢ ( 𝑤 ∈ ω → ( 𝜑 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ 𝐵 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ suc 𝑤 ) ∈ 𝐵 ) ) ) |
31 |
8 10 12 15 30
|
finds2 |
⊢ ( 𝑧 ∈ ω → ( 𝜑 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ) ) |
32 |
31
|
com12 |
⊢ ( 𝜑 → ( 𝑧 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ) ) |
33 |
32
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ) |
34 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω |
35 |
|
ffnfv |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) : ω ⟶ 𝐵 ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) Fn ω ∧ ∀ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ) ) |
36 |
34 35
|
mpbiran |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) : ω ⟶ 𝐵 ↔ ∀ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ‘ 𝑧 ) ∈ 𝐵 ) |
37 |
33 36
|
sylibr |
⊢ ( 𝜑 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) : ω ⟶ 𝐵 ) |
38 |
37
|
frnd |
⊢ ( 𝜑 → ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) ↾ ω ) ⊆ 𝐵 ) |
39 |
6 38
|
eqsstrd |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐵 ) |