| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 2 |  | noseq.2 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | noseqind.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 4 |  | noseqind.4 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  +s   1s  )  ∈  𝐵 ) | 
						
							| 5 |  | df-ima | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω )  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 6 | 1 5 | eqtrdi | ⊢ ( 𝜑  →  𝑍  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑧  =  ∅  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  ∈  𝐵 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  ∈  𝐵 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑤  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑧  =  suc  𝑤  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  ∈  𝐵 ) ) | 
						
							| 13 |  | fr0g | ⊢ ( 𝐴  ∈   No   →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  =  𝐴 ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  =  𝐴 ) | 
						
							| 15 | 14 3 | eqeltrd | ⊢ ( 𝜑  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ ∅ )  ∈  𝐵 ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  →  ( 𝑦  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  →  ( ( 𝑦  +s   1s  )  ∈  𝐵  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  𝐵 ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  →  ( ( 𝜑  →  ( 𝑦  +s   1s  )  ∈  𝐵 )  ↔  ( 𝜑  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  𝐵 ) ) ) | 
						
							| 19 | 4 | expcom | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝜑  →  ( 𝑦  +s   1s  )  ∈  𝐵 ) ) | 
						
							| 20 | 18 19 | vtoclga | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  ∈  𝐵  →  ( 𝜑  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  𝐵 ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝜑  ∧  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  ∈  𝐵 )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  𝐵 ) | 
						
							| 22 |  | ovex | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  V | 
						
							| 23 |  | eqid | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  +s   1s  )  =  ( 𝑥  +s   1s  ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑡  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  →  ( 𝑡  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  ) ) | 
						
							| 26 | 23 24 25 | frsucmpt2 | ⊢ ( ( 𝑤  ∈  ω  ∧  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  V )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  ) ) | 
						
							| 27 | 22 26 | mpan2 | ⊢ ( 𝑤  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑤  ∈  ω  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  ∈  𝐵  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  +s   1s  )  ∈  𝐵 ) ) | 
						
							| 29 | 21 28 | imbitrrid | ⊢ ( 𝑤  ∈  ω  →  ( ( 𝜑  ∧  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  ∈  𝐵 )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  ∈  𝐵 ) ) | 
						
							| 30 | 29 | expd | ⊢ ( 𝑤  ∈  ω  →  ( 𝜑  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑤 )  ∈  𝐵  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ suc  𝑤 )  ∈  𝐵 ) ) ) | 
						
							| 31 | 8 10 12 15 30 | finds2 | ⊢ ( 𝑧  ∈  ω  →  ( 𝜑  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵 ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( 𝜑  →  ( 𝑧  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵 ) ) | 
						
							| 33 | 32 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 34 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω | 
						
							| 35 |  | ffnfv | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) : ω ⟶ 𝐵  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  Fn  ω  ∧  ∀ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵 ) ) | 
						
							| 36 | 34 35 | mpbiran | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) : ω ⟶ 𝐵  ↔  ∀ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 37 | 33 36 | sylibr | ⊢ ( 𝜑  →  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω ) : ω ⟶ 𝐵 ) | 
						
							| 38 | 37 | frnd | ⊢ ( 𝜑  →  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  ↾  ω )  ⊆  𝐵 ) | 
						
							| 39 | 6 38 | eqsstrd | ⊢ ( 𝜑  →  𝑍  ⊆  𝐵 ) |