Metamath Proof Explorer


Theorem noseqinds

Description: Induction schema for surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
noseq.2 ( 𝜑𝐴 No )
noseqinds.3 ( 𝑦 = 𝐴 → ( 𝜓𝜒 ) )
noseqinds.4 ( 𝑦 = 𝑧 → ( 𝜓𝜃 ) )
noseqinds.5 ( 𝑦 = ( 𝑧 +s 1s ) → ( 𝜓𝜏 ) )
noseqinds.6 ( 𝑦 = 𝐵 → ( 𝜓𝜂 ) )
noseqinds.7 ( 𝜑𝜒 )
noseqinds.8 ( ( 𝜑𝑧𝑍 ) → ( 𝜃𝜏 ) )
Assertion noseqinds ( ( 𝜑𝐵𝑍 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
2 noseq.2 ( 𝜑𝐴 No )
3 noseqinds.3 ( 𝑦 = 𝐴 → ( 𝜓𝜒 ) )
4 noseqinds.4 ( 𝑦 = 𝑧 → ( 𝜓𝜃 ) )
5 noseqinds.5 ( 𝑦 = ( 𝑧 +s 1s ) → ( 𝜓𝜏 ) )
6 noseqinds.6 ( 𝑦 = 𝐵 → ( 𝜓𝜂 ) )
7 noseqinds.7 ( 𝜑𝜒 )
8 noseqinds.8 ( ( 𝜑𝑧𝑍 ) → ( 𝜃𝜏 ) )
9 1 2 noseq0 ( 𝜑𝐴𝑍 )
10 3 9 7 elrabd ( 𝜑𝐴 ∈ { 𝑦𝑍𝜓 } )
11 1 adantr ( ( 𝜑𝑧𝑍 ) → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
12 2 adantr ( ( 𝜑𝑧𝑍 ) → 𝐴 No )
13 simpr ( ( 𝜑𝑧𝑍 ) → 𝑧𝑍 )
14 11 12 13 noseqp1 ( ( 𝜑𝑧𝑍 ) → ( 𝑧 +s 1s ) ∈ 𝑍 )
15 8 14 jctild ( ( 𝜑𝑧𝑍 ) → ( 𝜃 → ( ( 𝑧 +s 1s ) ∈ 𝑍𝜏 ) ) )
16 15 expimpd ( 𝜑 → ( ( 𝑧𝑍𝜃 ) → ( ( 𝑧 +s 1s ) ∈ 𝑍𝜏 ) ) )
17 4 elrab ( 𝑧 ∈ { 𝑦𝑍𝜓 } ↔ ( 𝑧𝑍𝜃 ) )
18 5 elrab ( ( 𝑧 +s 1s ) ∈ { 𝑦𝑍𝜓 } ↔ ( ( 𝑧 +s 1s ) ∈ 𝑍𝜏 ) )
19 16 17 18 3imtr4g ( 𝜑 → ( 𝑧 ∈ { 𝑦𝑍𝜓 } → ( 𝑧 +s 1s ) ∈ { 𝑦𝑍𝜓 } ) )
20 19 imp ( ( 𝜑𝑧 ∈ { 𝑦𝑍𝜓 } ) → ( 𝑧 +s 1s ) ∈ { 𝑦𝑍𝜓 } )
21 1 2 10 20 noseqind ( 𝜑𝑍 ⊆ { 𝑦𝑍𝜓 } )
22 21 sselda ( ( 𝜑𝐵𝑍 ) → 𝐵 ∈ { 𝑦𝑍𝜓 } )
23 6 elrab ( 𝐵 ∈ { 𝑦𝑍𝜓 } ↔ ( 𝐵𝑍𝜂 ) )
24 22 23 sylib ( ( 𝜑𝐵𝑍 ) → ( 𝐵𝑍𝜂 ) )
25 24 simprd ( ( 𝜑𝐵𝑍 ) → 𝜂 )