| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noseq.1 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 2 |  | noseq.2 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | noseqinds.3 | ⊢ ( 𝑦  =  𝐴  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 |  | noseqinds.4 | ⊢ ( 𝑦  =  𝑧  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 5 |  | noseqinds.5 | ⊢ ( 𝑦  =  ( 𝑧  +s   1s  )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 6 |  | noseqinds.6 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜂 ) ) | 
						
							| 7 |  | noseqinds.7 | ⊢ ( 𝜑  →  𝜒 ) | 
						
							| 8 |  | noseqinds.8 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  ( 𝜃  →  𝜏 ) ) | 
						
							| 9 | 1 2 | noseq0 | ⊢ ( 𝜑  →  𝐴  ∈  𝑍 ) | 
						
							| 10 | 3 9 7 | elrabd | ⊢ ( 𝜑  →  𝐴  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 } ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐴 )  “  ω ) ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  𝐴  ∈   No  ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  𝑧  ∈  𝑍 ) | 
						
							| 14 | 11 12 13 | noseqp1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  ( 𝑧  +s   1s  )  ∈  𝑍 ) | 
						
							| 15 | 8 14 | jctild | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑍 )  →  ( 𝜃  →  ( ( 𝑧  +s   1s  )  ∈  𝑍  ∧  𝜏 ) ) ) | 
						
							| 16 | 15 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  𝑍  ∧  𝜃 )  →  ( ( 𝑧  +s   1s  )  ∈  𝑍  ∧  𝜏 ) ) ) | 
						
							| 17 | 4 | elrab | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 }  ↔  ( 𝑧  ∈  𝑍  ∧  𝜃 ) ) | 
						
							| 18 | 5 | elrab | ⊢ ( ( 𝑧  +s   1s  )  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 }  ↔  ( ( 𝑧  +s   1s  )  ∈  𝑍  ∧  𝜏 ) ) | 
						
							| 19 | 16 17 18 | 3imtr4g | ⊢ ( 𝜑  →  ( 𝑧  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 }  →  ( 𝑧  +s   1s  )  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 } ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 } )  →  ( 𝑧  +s   1s  )  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 } ) | 
						
							| 21 | 1 2 10 20 | noseqind | ⊢ ( 𝜑  →  𝑍  ⊆  { 𝑦  ∈  𝑍  ∣  𝜓 } ) | 
						
							| 22 | 21 | sselda | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝐵  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 } ) | 
						
							| 23 | 6 | elrab | ⊢ ( 𝐵  ∈  { 𝑦  ∈  𝑍  ∣  𝜓 }  ↔  ( 𝐵  ∈  𝑍  ∧  𝜂 ) ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐵  ∈  𝑍  ∧  𝜂 ) ) | 
						
							| 25 | 24 | simprd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝜂 ) |