Step |
Hyp |
Ref |
Expression |
1 |
|
noseq.1 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
2 |
|
noseq.2 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
noseqinds.3 |
⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
noseqinds.4 |
⊢ ( 𝑦 = 𝑧 → ( 𝜓 ↔ 𝜃 ) ) |
5 |
|
noseqinds.5 |
⊢ ( 𝑦 = ( 𝑧 +s 1s ) → ( 𝜓 ↔ 𝜏 ) ) |
6 |
|
noseqinds.6 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜂 ) ) |
7 |
|
noseqinds.7 |
⊢ ( 𝜑 → 𝜒 ) |
8 |
|
noseqinds.8 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → ( 𝜃 → 𝜏 ) ) |
9 |
1 2
|
noseq0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |
10 |
3 9 7
|
elrabd |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝐴 ∈ No ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ 𝑍 ) |
14 |
11 12 13
|
noseqp1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → ( 𝑧 +s 1s ) ∈ 𝑍 ) |
15 |
8 14
|
jctild |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → ( 𝜃 → ( ( 𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏 ) ) ) |
16 |
15
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ∧ 𝜃 ) → ( ( 𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏 ) ) ) |
17 |
4
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ↔ ( 𝑧 ∈ 𝑍 ∧ 𝜃 ) ) |
18 |
5
|
elrab |
⊢ ( ( 𝑧 +s 1s ) ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ↔ ( ( 𝑧 +s 1s ) ∈ 𝑍 ∧ 𝜏 ) ) |
19 |
16 17 18
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } → ( 𝑧 +s 1s ) ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) ) |
20 |
19
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) → ( 𝑧 +s 1s ) ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) |
21 |
1 2 10 20
|
noseqind |
⊢ ( 𝜑 → 𝑍 ⊆ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) |
22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝐵 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ) |
23 |
6
|
elrab |
⊢ ( 𝐵 ∈ { 𝑦 ∈ 𝑍 ∣ 𝜓 } ↔ ( 𝐵 ∈ 𝑍 ∧ 𝜂 ) ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐵 ∈ 𝑍 ∧ 𝜂 ) ) |
25 |
24
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝜂 ) |