Description: A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | ||
Assertion | noseqssno | ⊢ ( 𝜑 → 𝑍 ⊆ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
2 | noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
3 | peano2no | ⊢ ( 𝑦 ∈ No → ( 𝑦 +s 1s ) ∈ No ) | |
4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ No ) → ( 𝑦 +s 1s ) ∈ No ) |
5 | 1 2 2 4 | noseqind | ⊢ ( 𝜑 → 𝑍 ⊆ No ) |