Description: A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
| noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | ||
| Assertion | noseqssno | ⊢ ( 𝜑 → 𝑍 ⊆ No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
| 2 | noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 3 | peano2no | ⊢ ( 𝑦 ∈ No → ( 𝑦 +s 1s ) ∈ No ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ No ) → ( 𝑦 +s 1s ) ∈ No ) | 
| 5 | 1 2 2 4 | noseqind | ⊢ ( 𝜑 → 𝑍 ⊆ No ) |