Metamath Proof Explorer


Theorem noseqssno

Description: A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
Assertion noseqssno φ Z No

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 peano2no y No y + s 1 s No
4 3 adantl φ y No y + s 1 s No
5 1 2 2 4 noseqind φ Z No