Metamath Proof Explorer


Theorem noseqno

Description: An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 φ Z = rec x V x + s 1 s A ω
noseq.2 φ A No
noseqno.3 φ B Z
Assertion noseqno φ B No

Proof

Step Hyp Ref Expression
1 noseq.1 φ Z = rec x V x + s 1 s A ω
2 noseq.2 φ A No
3 noseqno.3 φ B Z
4 1 2 noseqssno φ Z No
5 4 3 sseldd φ B No