Metamath Proof Explorer


Theorem noseqno

Description: An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
noseq.2
|- ( ph -> A e. No )
noseqno.3
|- ( ph -> B e. Z )
Assertion noseqno
|- ( ph -> B e. No )

Proof

Step Hyp Ref Expression
1 noseq.1
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) )
2 noseq.2
 |-  ( ph -> A e. No )
3 noseqno.3
 |-  ( ph -> B e. Z )
4 1 2 noseqssno
 |-  ( ph -> Z C_ No )
5 4 3 sseldd
 |-  ( ph -> B e. No )