Metamath Proof Explorer


Theorem noseqno

Description: An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
noseq.2 ( 𝜑𝐴 No )
noseqno.3 ( 𝜑𝐵𝑍 )
Assertion noseqno ( 𝜑𝐵 No )

Proof

Step Hyp Ref Expression
1 noseq.1 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) )
2 noseq.2 ( 𝜑𝐴 No )
3 noseqno.3 ( 𝜑𝐵𝑍 )
4 1 2 noseqssno ( 𝜑𝑍 No )
5 4 3 sseldd ( 𝜑𝐵 No )