Description: An element of a surreal sequence is a surreal. (Contributed by Scott Fenton, 18-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | ||
noseqno.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑍 ) | ||
Assertion | noseqno | ⊢ ( 𝜑 → 𝐵 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noseq.1 | ⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐴 ) “ ω ) ) | |
2 | noseq.2 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
3 | noseqno.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑍 ) | |
4 | 1 2 | noseqssno | ⊢ ( 𝜑 → 𝑍 ⊆ No ) |
5 | 4 3 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ No ) |