Description: A surreal sequence is a subset of the surreals. (Contributed by Scott Fenton, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | noseq.1 | |- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | |
| noseq.2 | |- ( ph -> A e. No ) | ||
| Assertion | noseqssno | |- ( ph -> Z C_ No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noseq.1 | |- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , A ) " _om ) ) | |
| 2 | noseq.2 | |- ( ph -> A e. No ) | |
| 3 | peano2no | |- ( y e. No -> ( y +s 1s ) e. No ) | |
| 4 | 3 | adantl | |- ( ( ph /\ y e. No ) -> ( y +s 1s ) e. No ) | 
| 5 | 1 2 2 4 | noseqind | |- ( ph -> Z C_ No ) |