| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 | 1 2 3 | om2noseqiso | ⊢ ( 𝜑  →  𝐺  Isom   E  ,   <s  ( ω ,  𝑍 ) ) | 
						
							| 5 |  | ordom | ⊢ Ord  ω | 
						
							| 6 | 4 5 | jctil | ⊢ ( 𝜑  →  ( Ord  ω  ∧  𝐺  Isom   E  ,   <s  ( ω ,  𝑍 ) ) ) | 
						
							| 7 |  | ordwe | ⊢ ( Ord  ω  →   E   We  ω ) | 
						
							| 8 | 5 7 | ax-mp | ⊢  E   We  ω | 
						
							| 9 |  | isowe | ⊢ ( 𝐺  Isom   E  ,   <s  ( ω ,  𝑍 )  →  (  E   We  ω  ↔   <s   We  𝑍 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  (  E   We  ω  ↔   <s   We  𝑍 ) ) | 
						
							| 11 | 8 10 | mpbii | ⊢ ( 𝜑  →   <s   We  𝑍 ) | 
						
							| 12 | 3 | noseqex | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 13 |  | exse | ⊢ ( 𝑍  ∈  V  →   <s   Se  𝑍 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →   <s   Se  𝑍 ) | 
						
							| 15 |  | eqid | ⊢ OrdIso (  <s  ,  𝑍 )  =  OrdIso (  <s  ,  𝑍 ) | 
						
							| 16 | 15 | oieu | ⊢ ( (  <s   We  𝑍  ∧   <s   Se  𝑍 )  →  ( ( Ord  ω  ∧  𝐺  Isom   E  ,   <s  ( ω ,  𝑍 ) )  ↔  ( ω  =  dom  OrdIso (  <s  ,  𝑍 )  ∧  𝐺  =  OrdIso (  <s  ,  𝑍 ) ) ) ) | 
						
							| 17 | 11 14 16 | syl2anc | ⊢ ( 𝜑  →  ( ( Ord  ω  ∧  𝐺  Isom   E  ,   <s  ( ω ,  𝑍 ) )  ↔  ( ω  =  dom  OrdIso (  <s  ,  𝑍 )  ∧  𝐺  =  OrdIso (  <s  ,  𝑍 ) ) ) ) | 
						
							| 18 | 6 17 | mpbid | ⊢ ( 𝜑  →  ( ω  =  dom  OrdIso (  <s  ,  𝑍 )  ∧  𝐺  =  OrdIso (  <s  ,  𝑍 ) ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( 𝜑  →  𝐺  =  OrdIso (  <s  ,  𝑍 ) ) |