Metamath Proof Explorer


Theorem om2noseqoi

Description: An alternative definition of G in terms of df-oi . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
Assertion om2noseqoi ( 𝜑𝐺 = OrdIso ( <s , 𝑍 ) )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 1 2 3 om2noseqiso ( 𝜑𝐺 Isom E , <s ( ω , 𝑍 ) )
5 ordom Ord ω
6 4 5 jctil ( 𝜑 → ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) )
7 ordwe ( Ord ω → E We ω )
8 5 7 ax-mp E We ω
9 isowe ( 𝐺 Isom E , <s ( ω , 𝑍 ) → ( E We ω ↔ <s We 𝑍 ) )
10 4 9 syl ( 𝜑 → ( E We ω ↔ <s We 𝑍 ) )
11 8 10 mpbii ( 𝜑 → <s We 𝑍 )
12 3 noseqex ( 𝜑𝑍 ∈ V )
13 exse ( 𝑍 ∈ V → <s Se 𝑍 )
14 12 13 syl ( 𝜑 → <s Se 𝑍 )
15 eqid OrdIso ( <s , 𝑍 ) = OrdIso ( <s , 𝑍 )
16 15 oieu ( ( <s We 𝑍 ∧ <s Se 𝑍 ) → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) )
17 11 14 16 syl2anc ( 𝜑 → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) )
18 6 17 mpbid ( 𝜑 → ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) )
19 18 simprd ( 𝜑𝐺 = OrdIso ( <s , 𝑍 ) )