| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
| 4 |
1 2 3
|
om2noseqiso |
⊢ ( 𝜑 → 𝐺 Isom E , <s ( ω , 𝑍 ) ) |
| 5 |
|
ordom |
⊢ Ord ω |
| 6 |
4 5
|
jctil |
⊢ ( 𝜑 → ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ) |
| 7 |
|
ordwe |
⊢ ( Ord ω → E We ω ) |
| 8 |
5 7
|
ax-mp |
⊢ E We ω |
| 9 |
|
isowe |
⊢ ( 𝐺 Isom E , <s ( ω , 𝑍 ) → ( E We ω ↔ <s We 𝑍 ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ( E We ω ↔ <s We 𝑍 ) ) |
| 11 |
8 10
|
mpbii |
⊢ ( 𝜑 → <s We 𝑍 ) |
| 12 |
3
|
noseqex |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 13 |
|
exse |
⊢ ( 𝑍 ∈ V → <s Se 𝑍 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → <s Se 𝑍 ) |
| 15 |
|
eqid |
⊢ OrdIso ( <s , 𝑍 ) = OrdIso ( <s , 𝑍 ) |
| 16 |
15
|
oieu |
⊢ ( ( <s We 𝑍 ∧ <s Se 𝑍 ) → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) ) |
| 17 |
11 14 16
|
syl2anc |
⊢ ( 𝜑 → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) ) |
| 18 |
6 17
|
mpbid |
⊢ ( 𝜑 → ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝜑 → 𝐺 = OrdIso ( <s , 𝑍 ) ) |