Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
1 2 3
|
om2noseqiso |
⊢ ( 𝜑 → 𝐺 Isom E , <s ( ω , 𝑍 ) ) |
5 |
|
ordom |
⊢ Ord ω |
6 |
4 5
|
jctil |
⊢ ( 𝜑 → ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ) |
7 |
|
ordwe |
⊢ ( Ord ω → E We ω ) |
8 |
5 7
|
ax-mp |
⊢ E We ω |
9 |
|
isowe |
⊢ ( 𝐺 Isom E , <s ( ω , 𝑍 ) → ( E We ω ↔ <s We 𝑍 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( E We ω ↔ <s We 𝑍 ) ) |
11 |
8 10
|
mpbii |
⊢ ( 𝜑 → <s We 𝑍 ) |
12 |
3
|
noseqex |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
13 |
|
exse |
⊢ ( 𝑍 ∈ V → <s Se 𝑍 ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → <s Se 𝑍 ) |
15 |
|
eqid |
⊢ OrdIso ( <s , 𝑍 ) = OrdIso ( <s , 𝑍 ) |
16 |
15
|
oieu |
⊢ ( ( <s We 𝑍 ∧ <s Se 𝑍 ) → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) ) |
17 |
11 14 16
|
syl2anc |
⊢ ( 𝜑 → ( ( Ord ω ∧ 𝐺 Isom E , <s ( ω , 𝑍 ) ) ↔ ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) ) |
18 |
6 17
|
mpbid |
⊢ ( 𝜑 → ( ω = dom OrdIso ( <s , 𝑍 ) ∧ 𝐺 = OrdIso ( <s , 𝑍 ) ) ) |
19 |
18
|
simprd |
⊢ ( 𝜑 → 𝐺 = OrdIso ( <s , 𝑍 ) ) |