Metamath Proof Explorer


Theorem om2noseqoi

Description: An alternative definition of G in terms of df-oi . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqoi φ G = OrdIso < s Z

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 1 2 3 om2noseqiso φ G Isom E , < s ω Z
5 ordom Ord ω
6 4 5 jctil φ Ord ω G Isom E , < s ω Z
7 ordwe Ord ω E We ω
8 5 7 ax-mp E We ω
9 isowe G Isom E , < s ω Z E We ω < s We Z
10 4 9 syl φ E We ω < s We Z
11 8 10 mpbii φ < s We Z
12 3 noseqex φ Z V
13 exse Z V < s Se Z
14 12 13 syl φ < s Se Z
15 eqid OrdIso < s Z = OrdIso < s Z
16 15 oieu < s We Z < s Se Z Ord ω G Isom E , < s ω Z ω = dom OrdIso < s Z G = OrdIso < s Z
17 11 14 16 syl2anc φ Ord ω G Isom E , < s ω Z ω = dom OrdIso < s Z G = OrdIso < s Z
18 6 17 mpbid φ ω = dom OrdIso < s Z G = OrdIso < s Z
19 18 simprd φ G = OrdIso < s Z