Metamath Proof Explorer


Theorem om2noseqiso

Description: G is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqiso φ G Isom E , < s ω Z

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 1 2 3 om2noseqf1o φ G : ω 1-1 onto Z
5 epel y E z y z
6 1 2 3 om2noseqlt2 φ y ω z ω y z G y < s G z
7 5 6 bitrid φ y ω z ω y E z G y < s G z
8 7 ralrimivva φ y ω z ω y E z G y < s G z
9 df-isom G Isom E , < s ω Z G : ω 1-1 onto Z y ω z ω y E z G y < s G z
10 4 8 9 sylanbrc φ G Isom E , < s ω Z