Metamath Proof Explorer


Theorem om2noseqlt2

Description: The mapping G preserves order. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqlt2 φ A ω B ω A B G A < s G B

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 1 2 3 om2noseqlt φ A ω B ω A B G A < s G B
5 1 2 3 om2noseqlt φ B ω A ω B A G B < s G A
6 5 ancom2s φ A ω B ω B A G B < s G A
7 fveq2 B = A G B = G A
8 7 a1i φ A ω B ω B = A G B = G A
9 6 8 orim12d φ A ω B ω B A B = A G B < s G A G B = G A
10 nnon B ω B On
11 nnon A ω A On
12 onsseleq B On A On B A B A B = A
13 ontri1 B On A On B A ¬ A B
14 12 13 bitr3d B On A On B A B = A ¬ A B
15 10 11 14 syl2anr A ω B ω B A B = A ¬ A B
16 15 adantl φ A ω B ω B A B = A ¬ A B
17 1 2 3 om2noseqfo φ G : ω onto Z
18 fof G : ω onto Z G : ω Z
19 17 18 syl φ G : ω Z
20 3 1 noseqssno φ Z No
21 19 20 fssd φ G : ω No
22 21 ffvelcdmda φ B ω G B No
23 22 adantrl φ A ω B ω G B No
24 21 ffvelcdmda φ A ω G A No
25 24 adantrr φ A ω B ω G A No
26 sleloe G B No G A No G B s G A G B < s G A G B = G A
27 slenlt G B No G A No G B s G A ¬ G A < s G B
28 26 27 bitr3d G B No G A No G B < s G A G B = G A ¬ G A < s G B
29 23 25 28 syl2anc φ A ω B ω G B < s G A G B = G A ¬ G A < s G B
30 9 16 29 3imtr3d φ A ω B ω ¬ A B ¬ G A < s G B
31 4 30 impcon4bid φ A ω B ω A B G A < s G B