Metamath Proof Explorer


Theorem onsseleq

Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995)

Ref Expression
Assertion onsseleq AOnBOnABABA=B

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 eloni BOnOrdB
3 ordsseleq OrdAOrdBABABA=B
4 1 2 3 syl2an AOnBOnABABA=B